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Goal

Stein Variational Gradient Descent (SVGD) [2,
3] is a sampling algorithm that builds a se-
quence of probability measures (µn)n target-
ing a distribution π(x) ∝ exp(−V (x)), where
V : Rd → R, in the Kullback Leibler (KL)
sense.
Goal : Get convergence rates for SVGD.
Idea : Use optimization ideas on the Wasser-
stein space (P2(Rd),W2).

Background

Wasserstein distance.
Let P2(Rd) the set of probability measures with fi-
nite second moments on Rd. For µ, ν ∈ P2(Rd),

W 2(ν, µ) := inf
s∈S(µ,ν)

∫
‖x− y‖2ds(x, y).

S(µ, ν) is the set of couplings between µ and ν.

KL divergence.
Let µ ∈ P2(Rd). If µ� π, then

KL(µ|π) :=
∫

log(dµ
dπ

(x))dµ(x)

and KL(µ|π) := +∞ else.

Kernel integral operator.
Let k : Rd×Rd→ R a p.s.d. kernel and H0 its cor-
responding RKHS of real-valued on Rd. Denote by
H = H⊗d0 the product RKHS equipped with stan-
dard inner product 〈·, ·〉H and norm ‖·‖H. For µ ∈
P2(Rd), L2(µ) = {f : Rd→ Rd,

∫‖f‖2dµ <∞}.

Sµ : L2(µ)→ H is defined by
Sµf =

∫
k(., x)f(x)dµ(x), ∀f ∈ L2(µ).

Assume ∫
k(x, x)dµ(x) < ∞. Then H ⊂ L2(µ).

Denote the inclusion ι : H → L2(µ) with ι∗ =
Sµ its adjoint, and define Pµ : L2(µ) → L2(µ) the
operator:

Pµ := ιSµ

.

SVGD as KL minimization

Sampling from π is equivalent to sampling from the minimizer of µ 7→ KL(µ|π). In the infinite number of
particles regime, SVGD [2] can be seen as a gradient-descent like algorithm in the space (P2(Rd),W2) where
at each iteration n ≥ 0:

µn+1 =
(
I − γPµn∇ log

(µn
π

))
#
µn, (1)

where γ > 0, I identity map, µn, π also denote densities and # is the pushforward operation, i.e. in Rd:
X0 ∼ µ0 =⇒ Xn+1 = Xn − γPµn∇ log

(µn
π

)
(Xn) ∼ µn+1. (2)

Non Asymptotic Analysis of SVGD

Definition. Let µ ∈ P2(Rd). The Stein Fisher Information of µ relative to π is defined by :

IStein(µ|π) = ‖Sµ∇ log
(µ
π

)
‖2
H. (3)

Also referred to as the squared Kernel Stein Discrepancy (KSD) in the literature, separates the measures
under mild assumptions [1].

We assume the following.

(A1)Assume that ∃B > 0 s.t. for all x ∈, ‖k(x, .)‖H0≤ B and ‖∇xk(x, .)‖H= (∑d
i=1‖∂xik(xi, .)‖2

H0
)1

2 ≤ B.

(A2)The Hessian HV of V = − log π is well-defined and ∃M > 0 s.t. ‖HV ‖op≤M .

(A3)Assume that ∃ is C > 0 s.t. IStein(µn|π) < C for all n.
Under Assumptions (A1) and (A2), a sufficient condition for Assumption (A3) is supn

∫‖x‖µn(x)dx <∞.

Descent lemma for SVGD. Let µn defined by (2). Assume that Assumptions (A1) to (A3) hold. Let
α > 1 and choose γ ≤ α−1

αBC
1
2
. Denote β = 1− γ (α2+M)B2

2 . Then:

KL(µn+1|π)− KL(µn|π) ≤ −γβIstein(µn|π). (4)

Consequence of (4). Let α > 1 and γ < min
(

α−1
αBC

1
2
, 2

(α2+M)B2

)
. Then,

min
k=1,...,n

IStein(µn|π) ≤ 1
n

n∑
k=1

IStein(µk|π) ≤ KL(µ0|π)
γβn

. (5)

=⇒ Does not rely on the convexity of V !

Proof of (4): In optimization, descent lemmas are usually obtained under a smoothness assumption on
the objective. Here, the objective µ 7→ KL(µ|π) is nonsmooth, since its (Wasserstein) Hessian at µ:

〈v,HKL(.|π)(µ)v〉L2(µ) = EX∼µ [〈v(X), HV (X)v(X)〉]︸ ︷︷ ︸
(∗)

+EX∼µ
[
‖Jv(X)‖2

HS

]︸ ︷︷ ︸
(∗∗)

is not bounded over the whole tangent space to P2(Rd) at µ (included in L2(µ)). However, we can control
(∗∗) when restricted to H under (A1) and (A3), while (∗) is controlled by (A2).

Finite number of particles regime

In the finite number of particles regime, SVGD [3]
algorithm updates a set of N particles (X i

n)i=1,...,N ,
particles as:

X i
n+1 = X i

n − γPµ̂n∇ log
Å
µ̂n
π

ã
(X i

n), (6)

where

Pµ̂n∇ log
Å
µ̂n
π

ã
(·) = 1

N

ñ
N∑
j=1

k(Xj
n, ·)∇Xj

n
log π(Xj

n)

+ ∇Xj
n
k(Xj

n, ·)
ó
,

and µ̂n = 1
N

∑N
j=1 δXj

n
.

We assume the following.

(B1)Assume that ∃CV s.t. ∀x ∈, ‖V (x)‖≤ CV .

(B2)Assume that ∃D > 0 s.t. :
|k(x, x′)− k(y, y′)|≤ D(‖x− y‖+‖x′ − y′‖),
‖∇k(x, x′)−∇k(y, y′)‖≤ D(‖x− y‖+‖x′− y′‖)
for all x, x′, y, y′ ∈ Rd.

Propagation of chaos result.
Let n ≥ 0 and T > 0. Let µn and µ̂n be de-
fined by (2) and (6) respectively. Under Assump-
tion (A1),(A2),(B1),(B2); for any 0 ≤ n ≤ T

γ we
have :

E[W 2
2 (µn, µ̂n)] ≤

1
2

Å 1√
N

√
var(µ0)eLT

ã
(e2LT − 1)

where L is a constant depending on k and π.
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