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Stein Variational Gradient Descent (SVGD) (2,
3] is a sampling algorithm that builds a se-
quence of probability measures (u,), target-
ing a distribution 7(x) o exp(—V(x)), where

V : RY - R, in the Kullback Leibler (KL)

SCILSE.

Goal : Get convergence rates for SVGD.

Idea : Use optimization ideas on the Wasser-
stein space (Po(R%), W).

Background

Wasserstein distance.
Let Po(RY) the set of probability measures with fi-
nite second moments on R, For p, v € Py(RY),

Wev,p) = nf [z = ylPds(z,y)

S(p, v) is the set of couplings between p and v.

KL divergence.
Let 1 € Po(RY). If p < 7, then

KL(p|m) = | 10% plz)
and KL(u|m) := 400 else.

Kernel integral operator.
Let k: R x RY — R a p.s.d. kernel and H, its cor-
responding RKHS of real-valued on R?. Denote by

H = HE? the product RKHS equipped with stan-
dard inner product (-, ) and norm ||-||%. For u €

Po(RY), L () = {f : R = R, J|| f[*dp < oo}
S, o L*(1n) — H is defined by

= [ k(., @) f(x)dp(z), Vfe L)
Assume [ k(z,x)du(x) < oo. Then H C L*(u).
Denote the inclusion ¢ : H — L*(u) with o* =
S, its adjoint, and define P, : L*(u) — L*(u) the
operator:

P,:=.5,

SVGD as KLL minimization

Sampling from 7 is equivalent to sampling from the minimizer of y — KL(u|7). In the infinite number of
particles regime, SVGD [2] can be seen as a gradient-descent like algorithm in the space (Po(R?), W5) where
at each iteration n > 0:

Hn+1 = (] _ /Y'Pllfnv 1Og (@)> Hny (1)
TS

where ~v > 0, I identity map, u,, 7 also denote densities and # is the pushforward operation, i.e. in R%:

XO ~ oy = Xn+1 — Xn — WPunv 1Og (%) (Xn) ~ Hn+1- (2>

Non Asymptotic Analysis of SVGD

Definition. Let 1 € Po(R%). The Stein Fisher Information of u relative to 7 is defined by
i
Isten (1l = 15,V log (£ [, 3

Also referred to as the squared Kernel Stein Discrepancy (KSD) in the literature, separates the measures
under mild assumptions [1].

We assume the following.

DO | —

(Ay) Assume that 3B > 0 s.t. for all z €, ||k(x, )|, < B and ||V k(z, ) ||g= (04|00 k(2 )|I7,)? < B.
(As) The Hessian Hy of V = —logm is well-defined and AM > 0 s.t. || Hy||,p< M.
(A3) Assume that 3is C' > 0 s.t. Tsgein(pn|m) < C for all n.

Under Assumptions (A;) and (Ay), a sufficient condition for Assumption (Ag) is sup,, [||z||u.(x)dxr < oo.

Descent lemma for SVGD Let u,, defined by (2 ) Assume that Assumptions (A;) to (As) hold. Let

_ 1 _ Al M)B
@Bcz Denote 5 =1 —y—=——. Then:

KL(ptns1|m) — KL(pn| ) < =B Lstein(pin| ). (4)

a > 1 and choose v <

Consequence of (4). Let a > 1 and v < min ( o=l

oD [T BQ)‘ Then,

L KL (p0|m)
] ein n < [ ein S .
L0 Tstein(fn|7) kZl stein( k| T) < e

—> Does not rely on the convexity of V!

Proof of (4): In optimization, descent lemmas are usually obtained under a smoothness assumption on
the objective. Here, the objective u — KL(u|7) is nonsmooth, since its (Wasserstein) Hessian at pu:

<U7HKL(.]w)(N)U>L2(M) — 4:qu[<U(X)>1L]V(X)U(X)> + Exy [H‘]U(X)H%[S]
(%) ()

is not bounded over the whole tangent space to Po(R%) at u (included in L*(p)). However, we can control
(*xx) when restricted to ‘H under (A7) and (Ajs), while (%) is controlled by (As).

Finite number of particles regime

In the finite number of particles regime, SVGD |[3]
algorithm updates a set of N particles (X!);=1 . n,
particles as:

A

X! | =X —~P, Vlog (i)(){@) (6)

where
P, Vlog (M) ()= + % (X, )V log m(X2)
. - N |5 n )V X n
+ V k(X5 ')} ,
and i, = % 0.

We assume the following.

(B1) Assume that ACy s.t. Va €, ||V (z)||< Cy.

(B5) Assume that 4D > 0 s.t.

k(z,2') — k(y,y)|< D(||lz — yll+|l2" — ¥'|]),
VE(z,2') — VE(y, y)||< D(||lx — yl|+]|z" = ¥/[])
for all z, 2', v,y € R%.

Propagation of chaos result.

Let n > 0 and 17" > 0. Let u, and [, be de-
fined by (2) and (6) respectively. Under Assump—
tion (A1),(As),(B1),(Bs); for any 0 < n < ; we

have :
1

(W5 (pins )] < 5 (\;NV va?“(uo)ew) (e’ —1)

where L is a constant depending on k and 7.

References

1] Jackson Gorham and Lester Mackey. Measuring
sample quality with kernels. In /CML, 2017.

2] Qiang Liu. Stein variational gradient descent as
eradient flow. In N/PS, 2017,

3] Qiang Liu and Dilin Wang. Stein variational

oradient descent: A general purpose bayesian
inference algorithm. In N/PS. 2016.



