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Generative Adversarial Networks

Many successful applications:

» Single-image super-resolution
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Generative Adversarial Networks

Many successful applications:

» Image generation tasks: Image to image translation

Labels to Street Scene Labels to Facade BW to Color

input output

output
Day to Night _ Edges to Photo

input

Isola et al 2016

output




Generative Adversarial Networks

Many successful applications:

» Text to image generation

This small blue
bird has a short
pointy beak and
brown on its wings

This bird is
completely red
with black wings
and pointy beak

Zhang et al 2016



GAN'’s are hard to train!

Several failure cases
» Mode collapse:

Definitely




GAN’s are hard to train!
Several failure cases
» Oscillations: [Mescheder et al., 2018, Balduzzi et al., 2018]
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GAN'’s are hard to train!

Different angles:
» Optimization: [Roth et al., 2017, Mescheder et al., 2018]
» Game theory: [Heusel et al., 2017, Balduzzi et al., 2018]

» Metric :
[Arjovsky et al., 2017, Lin et al., 2018, Petzka et al., 2017]



GAN'’s are hard to train!

Different angles:
» Optimization: [Roth et al., 2017, Mescheder et al., 2018]
» Game theory: [Heusel et al., 2017, Balduzzi et al., 2018]

» Metric :
[Arjovsky et al., 2017, Lin et al., 2018, Petzka et al., 2017]

» What losses for training GAN’s?
» How to construct such losses?



Implicit generative models (IGM)

Given samples from a distribution P over X', want a model that
can produce new samples from Qg ~ P
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Implicit generative models (IGM)

Given samples from a distribution P over X', want a model that
can produce new samples from Qg ~ P

Y ~ Qo

» EGM: 4 has density gy(Y), no samples from Qy required.

» IGM: Y = Gy(Z) with known distribution for Z. Training by
sampling form 4.



Implicit generative models (IGM)

Deep network (params 6 ) mapping from noise Z to image X
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Project and reshape CONV 1
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DCGAN generator [Radford et al., 2015]
Z is uniform on [—1,1]%0
Choose 6 by minimizing some cost



Generative Adversarial Networks
[Goodfellow et al., 2014]

» Loss function:

L#(0) = zggEXNP[Iog(¢(X))] + Ex~gyllog(1 — o(x))] (1)
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Generative Adversarial Networks
[Goodfellow et al., 2014]

» Loss function:

L#(0) = Zgje Ex~p[log(é(x))] + Ex~g,[log(1 — &(x))] (1)

» Optimal classifer (over all possible classifiers):
L*(0) = — log(4) + 2JSD(P, Qy) ()

» Lower-bound: Lz(6) < L*(0).



Generative Adversarial Networks
[Goodfellow et al., 2014]

Deep network (params 1 ) mapping from image space X to
some value

DCGAN critic [Radford et al., 2015]



Generative Adversarial Networks
[Goodfellow et al., 2014]

» Min-max problem: ming max,, £(6,)

L(0,v) = Exp[log ¢, (X)] + Ezz[log(1 — ¢4 (Ge(Z2)))]

» Solved approximately by alternating:

» k SGD steps on ¢
» 1 SGD step on 6



Connection with Game Theory
Two agents:

> X:ﬁ?ﬁv%%(G.enerator Gp): minimize L£(6,) in 6.
> <gy(cmic by): maximize L(6, ) in 1.

* Generator (student) * Critic (teacher)

e Task: critic must teach generator
to draw images (here dogs)
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Connection with Game Theory

Not all Nash-Equilibria are of interest!!

moin max L(0,v) # max moin L(0,v)




Mode collapse

Definitely
a dog

Classification not enough!
Need to compare sets



L*(0) = —log(4) + 2JSD(P,Qp)

X=(0,2)~P Y=(0,2') ~Q



JSD(P, Qy,) = log(2)




JSD(P, Qs,) = log(2)




JSD(P, Qy,) = log(2)




Weak continuity

Definition
A sequence (Qp)n converges weakly to Q if for all bounded
continuous functions f:

Eq,[f(X)] = Eq[f(X)]
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Weak continuity

Definition
A sequence (Qp)n converges weakly to Q if for all bounded
continuous functions f:

Eq,[f(X)] = Eq[f(X)] (4)

Definition
A functional Q — F(Q) is continuous under the weak topology
if forall Q, — Q:

F(Qn) — F(Q) (%)

Q — JSD(P, Q) is not continuous under the weak topology!



Y = Gy(2)

Z ~0,1]9



Training IGMs

Criteria for choosing the loss L(P, Q):
» (C) Weak continuity: if Q, — Q then L(P, Q) — L(P, Q).
(Qn — Q means Qy[f(x)] — Q[f(x)] for all bounded
continuous f.)



Training IGMs

Criteria for choosing the loss L(P, Q):

» (C) Weak continuity: if Q, — Q then L(P, Q) — L(P, Q).
(Qn — Q means Q«[f(x)] — Q[f(x)] for all bounded
continuous f.)

» (M) Metrization of weak convergence: L(Q,Q,) — 0 if and
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Training IGMs

Criteria for choosing the loss L(P, Q):

» (C) Weak continuity: if Q, — Q then L(P, Q) — L(P, Q).
(Qn — Q means Qy[f(x)] — Q[f(x)] for all bounded
continuous f.)

» (M) Metrization of weak convergence: L(Q,Q,) — 0 if and
only if Q, — Q.

» (T) Tractability: L(P, Q) can be "easily" estimated by
sampling from P and Q.



Training IGMs

Loss Expression ) | (M) | (T)

3 (KL(P|n) + KL(Q| 1))
JSD(P||Q) p="40 X | x| x
W1 (]P), Q) Sup”"”upf“ E[P[f] — EQ[f] v v X
MMD(P, Q) | Sup;s,,<1 Eelfl - Eglf] | / v




Wasserstein GAN [Arjovsky et al., 2017]

1-Wasserstein distance:
Wi(P,Q) = sup Ep[f(X)] — Eq[ff(X)]

fllLip<1

[F(X) — {(X')]

f||Lip = sUu
Pl =38 T =1

WGAN: replace f by ¢,, and optimize over :

m@in max Ex~plow(X)] — Ezoz[oy(Go(2))]
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Non-convergence in WGAN

Toy problem in R, DiracGAN [Mescheder et al., 2018]
» Point mass target P = §p, model Qy = dy
» Test functions : ¢, (x) = ¥x, |¢] < 1.

IP’:c;o“ A Q=0

oy(T) = Yo




Non-convergence in WGAN

» WGAN-GP reduces mode collapse but... oscillations can
still happen [Mescheder et al., 2018]
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Maximum Mean Discrepancy [Gretton et al., 2012]

Maximum mean discrepancy:
MMD(P, Q) = sup Ep[f(X)] — Eq[f(X)]
H
<

Functions are linear combinations of features:

f(x) = (F,0())n = Y _ fioi(x)
i



Infinitely many features using kernels

» Feature map o(x) = [...@i(X)...]
» For positive definite k

Zwl {(x), (X))

» Infinitely many features ¢(x), but dot product in closed form



Infinitely many features using kernels

v

Feature map ¢(x) = [...¢i(X)--.]
For positive definite k

k(x,x") = Zw(X)sof(X’) = (p(x), o (X))

v

v

Infinitely many features ¢(x), but dot product in closed form

v

‘H: all possible linear combinations of features:

f=> fii
i



Infinitely many features using kernels

v

Feature map ¢(x) = [...¢i(X)--.]
For positive definite k

Zwl {(x), (X))

v

v

Infinitely many features ¢(x), but dot product in closed form

v

‘H: all possible linear combinations of features:

f=> fii
i

_ Z fioi(X) = (f, o(X))n



Maximum Mean Discrepancy [Gretton et al., 2012]

A simple expression for maximum mean discrepancy:

MMD?(P,Q) = Sup Ep[f(X)] — Eqg[f(X)]
ThHS
= Ep[k(X, X')] + Eg (X, X)] ~2Ez g [k(X, X)]
(2) (a) (b)

(a) = within distrib. similarity, (b)= cross-distrib. similarity



[llustration of the MMD




[llustration of the MMD

» dog(= P) and fish(= Q)
» Each entry is one of k(dog;, dog;), k(dog;, fish;) or
k(fishy, fish;)

Pyt "= P

>

»?
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[llustration of the MMD

2 . . )
MMD = ﬁ i k(dog;, dog;) + ﬁ iz k(fishy, fishy) — & 37, ; k(dog, fishy)




MMD as a loss [Dziugaite et al., 2015, Li et al., 2015]




MMD as a loss [Dziugaite et al., 2015, Li et al., 2015]
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Hard to pick a good kernel for images




MMD GANSs: Deep kernels [Li et al., 2017]
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MMD GANSs: Deep kernels [Li et al., 2017]
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MMD GANSs: Deep kernels [Li et al., 2017]
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ky (X, Y) = Kiop(04(X), ¢4(Y))



Smoothness of Dy

Toy problem in R, DiracGAN [Mescheder et al., 2018]
» Point mass target P = dp, model Qy = dy
» Representation ¢, (x) = ¥x, ¥ € R
> kernel Kigp(a, b) = exp(—3(a — b)?)

IP’:<50A A Q=5




Smoothness of Dyvp

Toy problem in R, DiracGAN [Mescheder et al., 2018]

dg

» Point mass target P = §p, model Qy

vx, P € R

)

» Representation ¢, (x
> kernel kip(a, b) = exp(—3(a

- b)?)
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Smoothness of Dyup

Toy problem in R, DiracGAN [Mescheder et al., 2018]
> Dymp = SUp, MMD(¢y(P), $,(Qp)) = V2.

1.5
Mmg, Dumb MMD,
1.0
0.5
0.0

-50 -25 00 2.5 5.0



Smoothness of Dyyp [Binkowski et al., 2018]

Gradient close to 1 here




Smoothness of Dyyp [Binkowski et al., 2018]

Train MMD critic features with the witness function gradient
penalty

max MMD2(6,/(X). 6,(Go(2))) = NEx (I Vxhu(X)|[2 = 1)

where
X =vXi + (1 —7)Gs(Z)
v~U0 ) Xi~P Zi~TZ

and

() x - ST K(0(X0, 1) — S K(6p(Go(Z)), 1
n i=1 n i=1



Smoothness of Dyvp

Toy problem in R, DiracGAN [Mescheder et al., 2018]

g

» Point mass target P = dp, model Qy

» Representation ¢, (x)

Px, P € R

> kernel kiop(a, b) = exp(—%(a— b)?)

MMD-GP
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Scaled MMD [Arbel et al., 2018]

MMDy, (P,Q) = sup Eg[f(X)] — Es[f(X)]

I, <1



Scaled MMD [Arbel et al., 2018]

SMMD,,(P,Q) = sup  Ex[f(X)] - E¢[f(X)] = o, MMDy, (P, Q)

1l <o

1flla,, <1 Ifllae,, <1

”f”?'lwz < oy, ||f|IH¢1 <oy,

H¢2 H¢1



Scaled MMD [Arbel et al., 2018]

Define a different norm:
17112, = ELlIF )P+ EulI VAX) 2] + (115,
We would like to have:

I71E, <1
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Scaled MMD [Arbel et al., 2018]

Define a different norm:
1712, = ELlIF O] + Eull V)12 + (1713,
We would like to have:
(f,CHn, <1
I£ls,, <1

[ £lla¢,, <1 I flls,, <1 1£ll#,, <1




Scaled MMD [Arbel et al., 2018]

Define a different norm:
1712, = Eu[IFOOIP] + Bl V)N + 1115,
We only need:

2 —1
115, < [1Clop

[£ls,, <1 [l £ll3¢,, <1 Iflls,, <1 [fllse,, <1

[£ll3, < o, [ fll3,, <o

HT/& ,Hl/h



Scaled MMD [Arbel et al., 2018]

SMMD,,(P, Q) := oy MMD(,(P), $4(Q))

where:

d
b = A+ EulK(0(X), oy (XN +Eul)_ 9i01+aK (94(X), d5(X)])

i=1

=



Scaled MMD [Arbel et al., 2018]

SMMD,,(P, Q) := oy MMD(,(P), $4(Q))

where:

d
b = A+ EulK(0(X), oy (XN +Eul)_ 9i01+aK (94(X), d5(X)])

P
when K is of the form K(a, b) = g(—||a — b||?)

v = (A4 9(0) +2/g (0) | E, ||V (X)) 2

=



Scaled MMD GAN

Adversarial distance:

Dsump(F, Go(Z)) := max oy, MMD(¢,(F), 6, (Go(Z)))
Generator’s objective:

mgin Dsymp(P, Go(Z))



SMMD GAN

» Use a class of features ¢,
» Chose the most discriminative one:

Dsymp(P, Q) = Szp oy p AMMD(¢y,(P), 4 (Q))



SMMD GAN

v

Use a class of features ¢y,
Chose the most discriminative one:

Dsymp(P, Q) = Szp oy p AMMD(¢y,(P), 4 (Q))

v

v

Initialize random generator Gy and feature ¢,

Repeat:
> k SGD steps in ¢ to maximize o2, MMD?(¢,,(P), $,,(Q))
> One SGD step in § to minimize 02, MMD2(6,,(P), ¢,(Q))

v



Dsmmp VS Dump

SMMD

10

MMD-GP




Dsmmp VS Dump
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Weak continuity of Dgymip

> [|¢y|lLip < 1 implies weak continuity of Dgymp...
> but E,[||Vxoy(X)[?] < 1 generally doesn't!



Weak continuity of Dsyvp

> [|¢y|lLip < 1 implies weak continuity of Dgymp...
> but E,[||Vxoy(X)[?] < 1 generally doesn't!
» Luckily

Vxdy(X H W o Mi(X



Weak continuity of Dsyvp

v

|ppllLip < 1 implies weak continuity of Dgymsp...
but E,[[|Vx¢,(X)|[?] < 1 generally doesn't!
Luckily

v

v

Vxoy(X H W o Mi(X

v

If W, have full rank, decreasing dimensions + leaky-RelLu:

aL
Voo (X = N9y llLio—1



Weak continuity of Dsyvp

Theorem: Dgymp(P, Q) is continuous wrt. the weak topology if:
» 1 has a density w.r.t Lebesgue measure.

> ¢y, is fully connected with Leaky-RelLU and non-increasing
width.

» The condition number of the weights per-layer in ¢,, is
bounded.



Experimental results: celebA 160 x 160

202 599 face images, resized and cropped to 160 x 160.

CelebA
30
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Experimental results: celebA 160 x 160

WGAN-GP (NIPS 2017) SN- SMMDGAN (ours)



Experimental results: Imagenet 64 x 64

ILSVRC2012 (ImageNet) dataset, 1 281 167 images, resized to

64 x 64. Around 20 000 classes.
Imagenet

Q 4
L
o ]
9 0.04
h4

SN-GAN BGAN SN-SMMDGAN
(ICLR 2018) (ICLR 2018) (NeurlPS 2018)



Experimental results: Imagenet 64 x 64

SN-GAN (ICLR 2018) SN-SMMDGAN (ours)




Experimental results

Faster training: performance scores vs generator iterations on
CelebA

(a) : KIDx103
35 —— SMMDGAN
—— SN-SMMDGAN
30 —— MMDGAN-GP-L2
—— Sobolev-GAN
~— SN-GAN
25 —— WGAN-GP
SN-SWGAN
20
15
10
0 2 4 6 8 10

generator iterations x10%

> Spectral parametrization improves training ! ( SMMDGAN vs
SN-SMMDGAN)



Conclusion

» Weak continuity of the loss functional is crucial for
successful training of IGMs.

» Adapting the amplitude of the MMD to the smoothness of
the kernel provides a simple way to achieve weak
continuity.

» Some insights on the choice of the critic’s architecture.
» State of the art results on challenging datasets.

Future directions:

» How do adversarial distances relate to other well-known
distances? ( Not generally equivalent in the strict metric
sense.)

» The choice of the distributions for the regularizing factor.



Thank you !
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