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Overview
Problem

Goal 1: Sampling from a target
density π known up to a normalizing
constant Z .

Goal 2: Estimating the normalizing
constant Z .

Applications

Bayesian statistics, Compression,
Statistical physics, Chemistry, etc...

Challenges

Curse of dimensionality.

Multimodality.

Annealed Flow Transport: Overview

Combines Sequential Monte Carlo (SMC) with Normalizing Flows (NFs).
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Similarly to SMC: Introduce a sequence of densities πk interpolating between a
proposal p and the target π.

Sequential sampling: Use samples from πk−1 to compute samples from πk.

AFT step: NF transport step followed by standard SMC steps.

Annealed Flow Transport steps

Flow Transport
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Flow Transport Tk moves X i
k−1 to new particles X̃ i

k close to πk.

Closed-form expression for the IS weights to correct for inexact flow:
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Importance Sampling: re-weights particles X̃ i
k proportionally to Gk(X i

k−1, X̃
i
k).

Resampling: duplicate particles with large weights and discard those with small
weights. (Recovers Annealed Importance Sampling (Neal, 2001) if no resampling.)

MCMC step: Move particles according to a Markov Kernel Kk with invariant
distribution πk (HMC, Gibbs samplers, etc).

Estimating normalizing constant Zk sequentially:
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Learning the flow sequentially
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approximation

Change of variables: KL(qT ||πk) as an expectation under πk−1 of a function hT(x)

hT(x) = log πk−1(x)− log πk(T (x))− log |∇T (x)| + C

Particle approximation: Use particles X i
k−1 and weights W i

k−1 to estimate
expectation of hT under πk−1.

Extension to prevent overfitting and biased estimation: Use three sets of particles:

Train: Used to estimate the gradient of the loss.
Validation: Used for early stopping of training.
Test: Not used to estimate the flow. Gives unbiased estimates of normalizing
constant and robust samples.

Theory I: Consistency and Asymptotic Nomality

AFT produces estimates πNK and ZN
K of π and Z that are consistent as N grows:

πNK [f ]
p−→ π [f ] ,

ZN
K

p−→ Z .

Fluctuations of the estimates satisfy a Central Limit theorem:
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Extends results of SMC algorithms using tools from empirical process theory.

V π[f ] matches the variance under π if the flows Tk exactly map πk−1 to πk.

Theory II: Continuous-time limit

Setting:

Population limit: Infinitely many particles N → +∞
Unadjusted Langevin kernel for Kk.
Continuous-time limit: Infinitely many auxiliary densities (πk)Kk=1 → (πt)[0,1].

AFT recovers a weighted controlled diffusion:

Sample paths X0,t follows a controlled SDE with control αt:

dXt = (α?t (Xt) +∇x log πt(Xt))dt +
√

2dBt

Sample paths X[0,t] are re-weighted according to:
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, gαs (Xs) := ∇x · αt + α>t ∇x log πt + ∂t log πt

Weights ensure the marginals of weighted diffusion match πt exactly.
Instantaneous work gαs measures how much the density of Xt differs from πt.
Optimal control α? obtained by minimizing the variance of Instantaneous work:
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Empirical Evaluation: Setup

Evaluation setup: We evaluate the trained extended algorithm (3 sets of particles )

Corresponds to using the test set particles with learned NFs.
Could be deployed in a larger setup and/or on massive parallel compute.

Performance measure: Number of transitions/flows as a proxy for compute time.

Assumes overhead of flow is negligible relative to sampling.
Works for AFT and SMC our primary baseline. VI is fast where we use it.

Choice of the Markov kernel: Same Markov kernel for AFT and SMC.

Choice of the Flow: Element-wise affine flow.

Has the benefit of linear memory/time in the dimension.
Not very expressive on its own, and is closed under composition of the flows.

Empirical Evaluation I: VAE Latent Space sampling

Task: Sampling from the posterior of
trained VAE on Mnist digits.

We identify digits that are harder for
variational inference:

Variational inference works reasonably
but is exceeded by SMC and AFT
eventually.

AFT has lower variance than SMC
particularly for smaller number of
temperatures.

Empirical Evaluation II: Log Gaussian Cox Process Posterior

π(x) ∝ N (x , µ,K )
∏

i∈[1:M ]2

exiyi−ae
xi
.

Becomes harder as lattice resolution
increases

We use a 40× 40 lattice giving 1600
dimensions.

AFT significantly outperforms baselines.

All methods could be further tailored.

This work was funded by DeepMind and the Gatsby Charitable Foundation. Contact: michael.n.arbel@gmail.com, alexmatthews@google.com, arnauddoucet@google.com


