Annealed Flow Transport Monte Carlo

Michael Arbel*!T, Alexander G.D.G. Matthews*?, and Arnaud Doucet?
“Equal Contribution

1Gatsby Computational Neuroscience Unit, University College London

’DeepMind

Problem Applications

@ Goal 1: Sampling from a target @ Bayesian statistics, Compression,

density m known up to a normalizing  Statistical physics, Chemistry, etc...

constant Z. Challenges

@ Goal 2: Estimating the normalizing
constant Z.

@ Curse of dimensionality.
@ Multimodality.

Annealed Flow Transport: Overview

Combines Sequential Monte Carlo (SMC) with Normalizing Flows (NFs).
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@ Similarly to SMC: Introduce a sequence of densities 7, interpolating between a
proposal p and the target .

@ Sequential sampling: Use samples from m,_; to compute samples from .
@ AFT step: NF transport step followed by standard SMC steps.

Annealed Flow Transport steps

Flow Transport |S 4+ Resampling
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@ Flow Transport T, moves X,ﬁ_l to new particles )?,L close to my.

@ Closed-form expression for the |S weights to correct for inexact flow:
m(Y)

7Tk_1(X)

@ Importance Sampling: re-weights particles )%,i proportionally to Gx(X]_;, )?,i)
@ Resampling: duplicate particles with large weights and discard those with small
weights. (Recovers Annealed Importance Sampling (Neal, 2001) if no resampling.)

@ MCMC step: Move particles according to a Markov Kernel K with invariant
distribution 7, (HMC, Gibbs samplers, etc).

@ Estimating normalizing constant Z, sequentially:
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@ Change of variables: KL(qr||mx) as an expectation under 7,_; of a function h7(x)
hr(x) = log mx_1(x) — logmk(T(x)) — log |V T (x)| + C
@ Particle approximation: Use particles X,i_l and weights W,£_1 to estimate
expectation of ht under m,_1.
@ Extension to prevent overfitting and biased estimation: Use three sets of particles:
o [rain: Used to estimate the gradient of the loss.
o Validation: Used for early stopping of training.

o [est: Not used to estimate the flow. Gives unbiased estimates of normalizing
constant and robust samples.

Theory I: Consistency and Asymptotic Nomality

@ AFT produces estimates W;’\(’ and Z/(V of m and Z that are consistent as N grows:
m [f] = m[f],
w5z
@ Fluctuations of the estimates satisfy a Central Limit theorem:
VN (m[f] = mlf]) = N0, VT[]
VN (Z¥ - Z) 2 N(0, V?)
@ Extends results of SMC algorithms using tools from empirical process theory.
@ V/™[f] matches the variance under 7 if the flows Ty exactly map 7,1 to m.

Theory |l: Continuous-time limit

@ Setting:
o Population limit: Infinitely many particles N — +o0
o Unadjusted Langevin kernel for K.

o Continuous-time limit: Infinitely many auxiliary densities (mx)5_; — (7¢)0.1].
@ AFT recovers a weighted controlled diffusion:
o Sample paths Xg ; follows a controlled SDE with control a;:

dX; = (af(X:) + Vylog m(X:))dt + V2dB;

o Sample paths X 4 are re-weighted according to:

t
W?*(X[O,t]) = €Xp (/ gg*(Xs)dS) : gsa(Xs) = Vx -0+ O‘;l_vx log T + Oy log ¢
0

o Weights ensure the marginals of weighted diffusion match 7; exactly.
o Instantaneous work g measures how much the density of X; differs from ;.
o Optimal control o obtained by minimizing the variance of Instantaneous work:

o = arg moin /01 dt (Wt[(gf‘)z] — Wt[gf‘]z) .

Empirical Evaluation: Setup

@ Evaluation setup: We evaluate the trained extended algorithm (3 sets of particles )
o Corresponds to using the test set particles with learned NFs.
o Could be deployed in a larger setup and/or on massive parallel compute.
@ Performance measure: Number of transitions/flows as a proxy for compute time.
o Assumes overhead of flow is negligible relative to sampling.
o Works for AFT and SMC our primary baseline. VI is fast where we use it.

@ Choice of the Markov kernel: Same Markov kernel for AFT and SMC.
@ Choice of the Flow: Element-wise affine flow.

o Has the benefit of linear memory/time in the dimension.
o Not very expressive on its own, and is closed under composition of the flows.

Empirical Evaluation |: VAE Latent Space sampling

@ [ask: Sampling from the posterior of
trained VAE on Mnist digits.
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@ Variational inference works reasonably
but is exceeded by SMC and AFT

eventually.

@ AFT has lower variance than SMC
particularly for smaller number of
temperatures.

@ We identify digits that are harder for
variational inference:
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@ Becomes harder as lattice resolution
INncreases

@ We use a 40 x 40 lattice giving 1600
dimensions.

@ AFT significantly outperforms baselines.
@ All methods could be further tailored.
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