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Overview
Problem

X Setting: data distributions with
small intrinsic dimension
embedded in a space with high
extrinsic dimension.

X Example: Includes data such as
natural images [2].

XGoal: Flexible models exploiting
low intrinsic dimensionality.

Intrinsic vs extrinsic dimensions
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Contributions

XA model with implicit and explicit component for data with low intrinsic dimension.

X End-to-end training procedure based on adversarial training.

X Sampling using latent space MCMC.

Motivation: Explicit vs Implicit models

Explicit models
x ∼ pθ(x)

Data Implicit models
x = Gθ(z), z ∼ U([0, 1])

An expressive implicit model can recover the weights, but training is waistful: it
throws away the critic.

An explicit model puts mass on the whole space: it blurs the samples.

Generalized Energy Based Models (GEBM)s

GEBMs are defined by a combination of the two components: energy and base

The base Gθ is defined by a fixed
latent noise Z ∼ η pushed-forward
by a generator Gθ(Z ).

X ∼ Gθ, ⇐⇒ X = Gθ(Z ), Z ∼ η

The base learns the low-dimensional
support of the data.

The energy E defines importance
weights on the support of Gθ

w(X ) = Z−1
θ,E exp(−E (X ))

Zθ,E = EX∼Gθ
[exp(−E (X ))].

The energy refines the mass on the
low-dimensional support of the base.

The GEBM Qθ,E

dQθ,E(X ) = w(X ) dGθ(X ).

Implicit sampling

Importance sampling

Learning GEBMs adversarially

Learning the energy

XMLE on the support of the base Gθ

LP,Gθ
(E ) = −EP [E ]− log Zθ,E

XAmortized estimation of log Zθ,E using convexity lower-bound

LP,Gθ
(E ) ≥ −EP [E + c]− EGθ

[
e−(E+c)

]
︸ ︷︷ ︸

FP,Gθ(E ,c)

XTight bound whenever c = log Zθ,E .

Learning the base

XMinimize the KL Approximate Lower-bound Estimator

KALE (P|Gθ) = max
E ,c
FP,Gθ

(E , c) := K(θ)

XWell-defined even when data and model have disjoint support

XProvably well-defined gradient when energies are L-Lipschitz

Theorem
If the set of energies is parametrized by a compact set, the energies and their
gradients w.r.t. x are L-Lipschitz in x and the generator and its gradient w.r.t.
θ are locally L-Lipschitz in θ, then sub-gradient methods on K converge to local
optima. Moreover, K is Lipschitz and differentiable for almost all θ ∈ Θ with:

∇K(θ) = Z−1
θ,E ?

∫
∇xE

?(Gθ(z))∇θGθ(z) exp(−E ?(Gθ(z)))η(z) dz .

Sampling from GEBMs using latent MCMC

GEBMs also defined by a learned latent noise Z ∼ η(Z )w(Gθ(Z )) mapped by Gθ.

Latent Sampling

Implicit sampling
X = Gθ(Z∞)

Latents are sampled according to a
’posterior’ distribution:

ν(Z ) = η(Z )w(Gθ(Z ))

Can use Langevin in latent space:

Wk+1 ∼ N (0, I )

Zk+1 = Zk + γ∇z log ν(Zk) +
√

2γWk+1

Latents are mapped to sample space
using the implicit map Gθ:

X = Gθ(Z )

Theorem
Assume that log η(z) is strongly concave and has a Lipschitz gradient, that E ,
Gθ and their gradients are all L-Lipschitz. Set xt = Gθ(zt), where zt is given by

dzt = ∇ log ν(zt) dt +
√

2 dwt,

with wt a Brownian motion. Then Pt, the probability distribution of xt,
converges to Qθ,E in the Wasserstein sense,

W2(Pt,Qθ,E) ≤ LCe−ct,

where c = O(exp(−dim(Z))).

Numerical results

GEBM vs GANs and EBMs
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Using the same models GEBMs
outperform GANs:

The critic/energy contains useful
information for sampling.

GEBMs outperform EBM:

GEBM exploits the low dimensional
assumption as an inductive bias.

Latent Sampling Improves FID score
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IHM DOT Langevin (ours)

Langevin latent sampling
improves over MCMC
methods that are not us-
ing gradient information
the energy (IHM) [3]) and
Discriminator Optimal
Transport [1].

Overdamped vs kinetic samplers for latent sampling
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Kinetic sampler

Overdamped samplers (like ULA) stick to one particular mode with each chain.

Kinetic samplers (like HMC) tend to explore multiple modes within the same chain.

Density estimation using adversarial training
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Can use GEBM trained with
KALE for density estimation.

When the base is an NVP,
GEBM is an EBM with a
learnable ref. measure Gθ.

Performance similar to MLE.
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