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_Overview | Learning GEBMs adversarially

Problem Intrinsic vs extrinsic dimensions
v_ Setting: data distributions with 40

small intrinsic dimension 35

embedded in a space with high 30

extrinsic dimension. -
v Example: Includes data such as dint

natural images [2]. 20 |
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v Goal: Flexible models exploiting 15 — Cifarl0

low intrinsic dimensionality. 0 500 1000
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Contributions

v" A model with implicit and explicit component for data with low intrinsic dimension.

v End-to-end training procedure based on adversarial training.
v Sampling using latent space MCMC.

Motivation: Explicit vs Implicit models

Data

Implicit models
x = Gy(z),z

Explicit models
x ~ py(x)
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@ An expressive implicit model can recover the weights, but training is waistful: it
throws away the critic.

@ An explicit model puts mass on the whole space: it blurs the samples.

Learning the energy
v" MLE on the support of the base Gy

LP,GQ(E) = — ‘ﬂp [E] — |Og Z@)E
v Amortized estimation of log Zy g using convexity lower-bound
Lpc,(E) > —Ep[E + ] — Eg, [e(E“)]
S —
FrG,y(E,c)

v" Tight bound whenever ¢ = log Zj .
Learning the base
v' Minimize the KL Approximate Lower-bound Estimator

KALE(P‘G@) — rrgaxfp,GQ(E, C) L= /C(Q)

v Well-defined even when data and model have disjoint support
v Provably well-defined gradient when energies are L-Lipschitz

Theorem

If the set of energies is parametrized by a compact set, the energies and their
gradients w.r.t. x are L-Lipschitz in x and the generator and its gradient w.r.t.

0 are locally L-Lipschitz in 6, then sub-gradient methods on IC converge to local
optima. Moreover, K is Lipschitz and differentiable for almost all 6 € © with:

VK(0) = Z, E*/V E*(Gy(z))VyGy(z) exp(—E*(Gy(z)))n(z) dz.

Generalized Energy Based Models (GEBM)s

GEBMs are defined by a combination of the two components: energy and base

@ [ he base (¢ is defined by a fixed

latent noise Z ~ 1 pushed-forward
by a generator Gy(Z).

X ~ (5y, — X = G@(Z),

@ [ he base learns the low-dimensional
support of the data.

Z~n

Implicit sampling

L~

@ T he energy E defines importance
weights on the support of (5

w(X) = Z, Lexp(—E(X)
Zy e = Exg,|exp(—E(X))].

@ T he energy refines the mass on the
low-dimensional support of the base.

o The GEBM Q) ¢
dQp e(X) =

Importance sampling

N\

w(X) dGy(X).

Sampling from GEBMs using latent MCMC

GEBMs also defined by a learned latent noise Z ~ n(Z)w(Gy(Z)) mapped by Gy.

Latent Sampling

LS

@ Can use Langevin in latent space:
Implicit sampling
X = Gy(Z.) Wi ~ N(0,1)
l L1 = 2Lk +yV,log V(Zk) + /27 Wiy 1

@ Latents are mapped to sample space
'\/ using the implicit map Gy:

X = Gy(Z)

@ Latents are sampled according to a
‘posterior’ distribution:

v(Z) =n(Z)w(Gy(£))

Theorem

Assume that logn(z) is strongly concave and has a Lipschitz gradient, that E,
Gy and their gradients are all L-Lipschitz. Set x; = Gy(z;), where z; is given by

dz; = Vlogv(z,) dt + V2 dw,,

with wy a Brownian motion. Then IP;, the probability distribution of x;,
converges to Dy g in the Wasserstein sense,

Wa(IPe, Qo) < LCe™,
where ¢ = O(exp(—dim(Z))).

Numerical results

GEBM vs GANs and EBMs

40- @ Using the same models GEBMs
a5 - GEBM outperform GANs:
_ GAN @ The critic/energy contains useful
V 30 _ : :
S W EBM information for sampling.
én = WS EBM supervised @ GEBMs outperform EBM:
- 20- @ GEBM exploits the low dimensional
15 assumption as an inductive bias.

ConvNet ResNet ConvNet ResNet

Cifarlq Imagenet
Latent Sampling Improves FID score

Langevin latent sampling

%70 improves over MCMC
~ 60- methods that are not us-
T ing gradient information
% 50- the energy (IHM) [3]) and
= Discriminator ~ Optimal
= G0 LSUN - CelebA Imagenet Transport [1].

IHM DOT Langevin (ours)

Overdamped vs kinetic samplers for latent sampling

Overdamped sampler Kinetic sampler
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@ Overdamped samplers (like ULA) stick to one particular mode with each chain.
e Kinetic samplers (like HMC) tend to explore multiple modes within the same chain.

Density estimation using adversarial training

S @ Can use GEBM trained with
214 KALE for density estimation.
v 13- @ When the base is an NVP,
a' GEBM is an EBM with a
912 learnable ref. measure (.
_g @ Performance similar to MLE.
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