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Learning Conditional Distributions

Goal: Learning conditional densities in a non-parametric fashion.

Number of modes can vary

 p(y|x= − 1)   p(y|x= 1)  

Densities can be heteroscedastic

Density ratios are often simpler to learn than
the full joint

Contribution:

XA particular form of Conditional
Exponential Family based on vector valued
RKHS.

XA method for approximating conditional
densities using the KCEF with statistical
guarantees.

Kernel Exponential Family (Sriperumbudur et al. (2017))

Idea: Parametrize densities with functions in an RKHS G with kernel k

pθ(y) = q0(y)e〈θ,k(y ,.)〉G−A(θ) A(θ) = log

∫
q0(y)e〈θ,k(y ,.)〉Gdy

θ is the natural parameter and k(y , .) the sufficient statistic. Both are ’infinite’
dimensional vectors.

XRicher than finite dimensional exponential family

× Intractable log-partition function A(θ) : MLE is hard to compute.

X Learning via Score-Matching (Hyvarinen (2005))

XGood statistical properties (Sriperumbudur et al. (2017))

Kernel Conditional Exponential Family

Idea: Extend the KEF to conditional densities:

pθ(y |x) = q0(y)e〈θx ,k(y ,.)〉G−A(θx) A(θx) = log

∫
q0(y)e〈θx ,k(y ,.)〉Gdy

x 7→θx constrained to be in a vector valued RKHS H with vector valued kernel Γx ,x ′.
H contains functions θ : X 7→ G that satisfy the vector valued reproducing property
(Micchelli and Pontil (2005)):

〈θx, f 〉G = 〈θ, Γx ,.f 〉H; ∀f ∈ G
By this property, pθ can also be written as:

pθ(y |x) = q0(y)e〈θ,Γx ,.k(y ,.)〉H−A(θx)

Experiments: Sampling from KCEF

Motivation: Sampling from a high dimensional distribution p(x1, ..., xd) can suffer from a
slow mixing time.
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Idea:

XApproximate p by a product
of conditional densities p '
p̂(x1)p̂(x2|x1)...p̂(xd |xπ(d))

XUse Ancestral Hamiltonian
Mote Carlo to sample from
p̂(Xi|Xπ(i)) given a sample
Xπ(i).

Model comparison: Samples from different models can be compared using the test for
relative similarity in (Bounliphone et al. (2015)).

Expected Conditional Score Matching

Motivation: Define a loss between two unnormalized conditional densities : J (p, q).
Idea: Adapt the score objective from (Hyvarinen (2005)) to conditional densities:

J (p, q) =
1

2
EX ,Y

[∥∥∥∥∇y log
p(Y |X )

q(Y |X )

∥∥∥∥2
]

The expectation is under the true joint distribution. Using integration by part and some
regularity conditions:

J (p, q) = EX ,Y

[
∆y log q(Y |X ) +

1

2
‖∇y log q(Y |X )‖2

]
+ const

For qθ in the KCEF the score is convex and quadratic in θ:

J (p, qθ) =
1

2
〈θ,Cθ〉H + 〈ξ, θ〉H + const

EX ,Y

[∑d
i=1 ΓX ,.∂ik(Y , .)⊗ ΓX ,.∂ik(Y , .)

]
EX ,Y

[∑d
i=1 ΓX ,.∂

2
i k(Y , .) + ∂i log g(Y )ΓX ,.∂ik(Y , .)

]
C is a symmetric positive trace-class operator and ξ is a vector in H:

XNo need to compute the intractable normalizer.

XConvex quadratic loss: Guarantees existence and uniqueness of an optimal solution.

XA provably convergent algorithm can be used to estimate the optimal θ.

×The score can become degenerate if p(y |x) is not supported on the whole space.

Truth in Advertising

Failure case: J (p, q) is degenerate if p(y |x) is supported on disjoint subsets.

p(y | − 1) p(y |1)

p(y) = 1
2(p(y | − 1) + p(y |1))

J (p(y |x)︸ ︷︷ ︸
target

, p(y)︸︷︷︸
model

) = 0

Easy Fix: Add a small gaussian noise to the data!

Finite Sample estimate

Given n samples (Xi ,Yi)1≤i≤n, the regularized empirical version of the score is:

Ĵ (p, q) =
1

2
〈θ, Ĉθ〉H + 〈ξ̂, θ〉H +

λ

2
‖θ‖2

H

kernel trick: The generalized representer theorem ensures θ̂ is of the form:

θ̂ = −1

λ
ξ̂ +

∑
b∈[n];i∈[d ]

β(b,i)ΓXb
∂ik(Yb, .)

where β is obtained by solving a linear system of size n × d :

(G + nλI )β =
1

λ
h

(〈∂ik(Ya, .), Γ(Xa,Xb)∂jk(Yb, .)〉H)(a,i),(b,j)∈[n]×[d ] (∂i ξ̂(Xa,Ya))(a,i)∈[n]×[d ]

Theory

The paper provides asymptotic rates of convergence of θ̂ in the well-specified case. If θ0 is
the true natural parameter, then:

‖θ̂ − θ0‖ = Op0(n
−1

2+α)

with λ = n−α and 1
4 < α < 1

2 depends on the kernels and p0.

Experiments: Comparison with other methods: Real NADE and LSCDE

Estimating p(y |x).
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NADE
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R datasets: Ntrain = Ntest from 10 to 300.

dy = 1 and dx from 1 to 13.

Estimating p(x1, ..., xd) as a product of conditional
densities.
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UCI datasets: Ntrain = 10 ∗ Ntest from 1500 to 5000.

d from 11 to 15.
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