Kernel Conditional Exponential Family

Michael Arbel and Arthur Gretton

Gatsby Computational Neuroscience Unit

Learning Conditional Distributions

Goal: Learning conditional densities in a non-parametric fashion.

Densities can be heteroscedastic

Contribution:

✓ A particular form of Conditional Exponential Family based on vector valued RKHS.

Expected Conditional Score Matching

Motivation: Define a loss between two unnormalized conditional densities : $\mathcal{J}(p,q)$. Idea: Adapt the score objective from (Hyvarinen (2005)) to conditional densities:

$$\mathcal{J}(\boldsymbol{p},\boldsymbol{q}) = \frac{1}{2} \mathbb{E}_{X,Y} \left[\left\| \nabla_{y} \log \frac{\boldsymbol{p}(Y|X)}{\boldsymbol{q}(Y|X)} \right\|^{2} \right]$$

The expectation is under the true joint distribution. Using integration by part and some regularity conditions:

$$\mathcal{J}(\boldsymbol{p},\boldsymbol{q}) = \mathbb{E}_{X,Y}\left[\Delta_{y}\log q(Y|X) + \frac{1}{2}\left\|\nabla_{y}\log q(Y|X)\right\|^{2}\right] + const$$

For q_{θ} in the KCEF the score is convex and quadratic in θ :

 $\mathcal{J}(\boldsymbol{p},\boldsymbol{q}_{\theta}) = \frac{1}{2} \langle \theta, \boldsymbol{C}\theta \rangle_{\mathcal{H}} + \langle \boldsymbol{\xi}, \theta \rangle_{\mathcal{H}} + const$

 $\mathbb{E}_{X,Y}\left[\sum_{i=1}^{d} \Gamma_{X,.}\partial_{i}k(Y,.) \otimes \Gamma_{X,.}\partial_{i}k(Y,.)\right] \qquad \mathbb{E}_{X,Y}\left[\sum_{i=1}^{d} \Gamma_{X,.}\partial_{i}^{2}k(Y,.) + \partial_{i}\log g(Y)\Gamma_{X,.}\partial_{i}k(Y,.)\right]$

0.3

(**X**|**X**)

- Density ratios are often simpler to learn than the full joint
- ✓ A method for approximating conditional densities using the KCEF with statistical guarantees.
- C is a symmetric positive trace-class operator and ξ is a vector in \mathcal{H} :
 - \checkmark No need to compute the intractable normalizer.
 - ✓ Convex quadratic loss: Guarantees existence and uniqueness of an optimal solution.
 - \checkmark A provably convergent algorithm can be used to estimate the optimal θ .
 - × The score can become degenerate if p(y|x) is not supported on the whole space.

- $p(y) = \frac{1}{2}(p(y|-1) + p(y|1))$

Truth in Advertising

Idea: Parametrize densities with functions in an RKHS \mathcal{G} with kernel k

Kernel Exponential Family (Sriperumbudur et al. (2017))

$$q_{\theta}(y) = q_{0}(y)e^{\langle \theta, k(y,.) \rangle_{\mathcal{G}} - A(\theta)} \qquad A(\theta) = \log \int q_{0}(y)e^{\langle \theta, k(y,.) \rangle_{\mathcal{G}}} dy$$

 θ is the natural parameter and k(y, .) the sufficient statistic. Both are 'infinite' dimensional vectors.

Richer than finite dimensional exponential family

× Intractable log-partition function $A(\theta)$: MLE is hard to compute.

✓ Learning via Score-Matching (Hyvarinen (2005))

✓ Good statistical properties (Sriperumbudur et al. (2017))

Kernel Conditional Exponential Family

Idea: Extend the KEF to conditional densities:

 $p_{\theta}(y|x) = q_0(y)e^{\langle \theta_x, k(y, .) \rangle_{\mathcal{G}} - A(\theta_x)} \qquad A(\theta_x) = \log \int q_0(y)e^{\langle \theta_x, k(y, .) \rangle_{\mathcal{G}} - A(\theta_x)}$

$$A(\theta_{x}) = \log \int a_{0}(y) e^{\langle \theta_{x}, k(y, .) \rangle_{\mathcal{G}}} dy$$

Failure case: $\mathcal{J}(p,q)$ is degenerate if p(y|x) is supported on disjoint subsets.

Easy Fix: Add a small gaussian noise to the data!

Finite Sample estimate

Given *n* samples $(X_i, Y_i)_{1 \le i \le n}$, the regularized empirical version of the score is:

$$\hat{\mathcal{J}}(\boldsymbol{p},\boldsymbol{q}) = \frac{1}{2} \langle \theta, \hat{\mathcal{C}}\theta \rangle_{\mathcal{H}} + \langle \hat{\boldsymbol{\xi}}, \theta \rangle_{\mathcal{H}} + \frac{\lambda}{2} \|\theta\|_{\mathcal{H}}^{2}$$

 $x \mapsto \theta_x$ constrained to be in a vector valued RKHS \mathcal{H} with vector valued kernel $\Gamma_{x,x'}$. \mathcal{H} contains functions $\theta: \mathcal{X} \mapsto \mathcal{G}$ that satisfy the vector valued reproducing property (Micchelli and Pontil (2005)):

$$\langle \theta_x, \mathbf{f} \rangle_{\mathcal{G}} = \langle \theta, \Gamma_{x, \mathbf{f}} \rangle_{\mathcal{H}}; \quad \forall \mathbf{f} \in \mathcal{G}$$

By this property, p_{θ} can also be written as:

$$p_{ heta}(y|x) = q_0(y) e^{\langle oldsymbol{ heta}, \Gamma_{x,.} oldsymbol{k}(y,.)
angle_{\mathcal{H}} - A(oldsymbol{ heta}_x)}$$

Experiments: Sampling from KCEF

Motivation: Sampling from a high dimensional distribution $p(x_1, ..., x_d)$ can suffer from a slow mixing time.

Idea: \checkmark Approximate *p* by a product of conditional densities $p \simeq$ $\hat{p}(x_1)\hat{p}(x_2|x_1)...\hat{p}(x_d|x_{\pi(d)})$

kernel trick: The generalized representer theorem ensures θ is of the form:

Theory

The paper provides asymptotic rates of convergence of $\hat{\theta}$ in the well-specified case. If θ_0 is the true natural parameter, then:

 $\|\hat{\theta} - \theta_0\| = \mathcal{O}_{p_0}(n^{-\frac{1}{2}+\alpha})$

with $\lambda = n^{-\alpha}$ and $\frac{1}{4} < \alpha < \frac{1}{2}$ depends on the kernels and p_0 .

Experiments: Comparison with other methods: Real NADE and LSCDE Estimating p(y|x). Estimating $p(x_1, ..., x_d)$ as a product of conditional densities. negative log-likelihood negative log-likelihood KCEF KCEF-F NADE KCEF-M LSCDE LSCDE-F LSCDE-M

✓ Use Ancestral Hamiltonian Mote Carlo to sample from $\hat{p}(X_i|X_{\pi(i)})$ given a sample $X_{\pi(i)}$.

Model comparison: Samples from different models can be compared using the test for relative similarity in (Bounliphone et al. (2015)).

Bibliography

Bounliphone, W., Belilovsky, E., Blaschko, M. B., Antonoglou, I., and Gretton, A. (2015). A test of relative similarity for model selection in generative models. CoRR.

Hyvarinen, A. (2005). Estimation of non-normalized statistical models by score matching. J. Mach. Learn. Res.

Micchelli, C. A. and Pontil, M. A. (2005). On learning vector-valued functions. Neural Comput.

Sriperumbudur, B., Fukumizu, K., Kumar, R., Gretton, A., and Hyvarinen, A. (2017). Density estimation in infinite dimensional exponential families. Journal of Machine Learning Research.

This work was funded by the Gatsby Charitable Foundation.

Contact: michael.n.arbel@gmail.com

NADE