

Goal

Stein Variational Gradient Descent (SVGD) [2, 3] is a sampling algorithm that builds a sequence of probability measures $(\mu_n)_n$ targeting a distribution $\pi(x) \propto \exp(-V(x))$, where $V : \mathbb{R}^d \to \mathbb{R}$, in the Kullback Leibler (KL) sense. **Goal** : Get convergence rates for SVGD.

Idea : Use optimization ideas on the Wasserstein space $(\mathcal{P}_2(\mathbb{R}^d), W_2)$.

Background

Wasserstein distance.

Let $\mathcal{P}_2(\mathbb{R}^d)$ the set of probability measures with finite second moments on \mathbb{R}^d . For $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$,

$$W^2(\nu,\mu) := \inf_{s \in S(\mu,\nu)} \int ||x-y||^2 ds(x,y).$$

 $S(\mu, \nu)$ is the set of couplings between μ and ν .

KL divergence.

Let $\mu \in \mathcal{P}_2(\mathbb{R}^d)$. If $\mu \ll \pi$, then

$$\mathrm{KL}(\mu|\pi) := \int \log(\frac{d\mu}{d\pi}(x))d\mu(x)$$

and $KL(\mu|\pi) := +\infty$ else.

Kernel integral operator.

Let $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ a p.s.d. kernel and \mathcal{H}_0 its corresponding RKHS of real-valued on \mathbb{R}^d . Denote by $\mathcal{H} = \mathcal{H}_0^{\otimes d}$ the product RKHS equipped with standard inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ and norm $\|\cdot\|_{\mathcal{H}}$. For $\mu \in$ $\mathcal{P}_2(\mathbb{R}^d), L^2(\mu) = \{f : \mathbb{R}^d \to \mathbb{R}^d, \int ||f||^2 d\mu < \infty\}.$

$$S_{\mu}: L^2(\mu) \to \mathcal{H}$$
 is defined by

$$oldsymbol{S}_{oldsymbol{\mu}}oldsymbol{f} = \int oldsymbol{k}(.,x)oldsymbol{f}(x)oldsymbol{d}oldsymbol{\mu}(x), \quad orall f \in L^2(\mu).$$

Assume $\int k(x, x) d\mu(x) < \infty$. Then $\mathcal{H} \subset L^2(\mu)$. Denote the inclusion $\iota : \mathcal{H} \to L^2(\mu)$ with $\iota^* =$ S_{μ} its adjoint, and define $P_{\mu}: L^{2}(\mu) \to L^{2}(\mu)$ the operator:

$$P_{\mu}:=\iota S_{\mu}$$

A Non Asymptotic Analysis for **Stein Variational Gradient Descent**

Anna Korba¹, Adil Salim², Michael Arbel¹, Giulia Luise³, Arthur Gretton¹

¹Gatsby Unit, University College London. ²Visual Computing Center, KAUST. ³ Department of Computer Science, University College London.

SVGD as KL minimization

Sampling from π is equivalent to sampling from the minimizer of $\mu \mapsto \mathrm{KL}(\mu|\pi)$. In the infinite number of particles regime, SVGD [2] can be seen as a gradient-descent like algorithm in the space $(\mathcal{P}_2(\mathbb{R}^d), W_2)$ where at each iteration n > 0:

 $\mu_{n+1} = \left(I - \gamma \boldsymbol{P}_{\boldsymbol{\mu}_n} \nabla \log\right)$

where $\gamma > 0$, I identity map, μ_n, π also denote densities and # is the pushforward operation, i.e. in \mathbb{R}^d : $X_0 \sim \mu_0 \implies X_{n+1} = X_n - \gamma P_{\mu_n} \nabla \log\left(\frac{\mu_n}{\pi}\right) (X_n) \sim \mu_{n+1}.$

Non Asymptotic Analysis of SVGD

Definition. Let $\mu \in \mathcal{P}_2(\mathbb{R}^d)$. The Stein Fisher Information $I_{Stein}(\mu|\pi) = \|S_{\mu}\nabla \log \nabla \eta\|$

Also referred to as the squared Kernel Stein Discrepancy under mild assumptions [1].

We assume the following.

 (\mathbf{A}_1) Assume that $\exists B > 0$ s.t. for all $x \in ||k(x, .)||_{\mathcal{H}_0} \leq B$ (\mathbf{A}_2) The Hessian H_V of $V = -\log \pi$ is well-defined and \exists (A₃) Assume that \exists is C > 0 s.t. $I_{Stein}(\mu_n | \pi) < C$ for all n. Under Assumptions (A₁) and (A₂), a sufficient condition for Assumption (A₃) is $\sup_n \int ||x|| \mu_n(x) dx < \infty$.

Descent lemma for SVGD. Let μ_n defined by (2). Assume that Assumptions (A₁) to (A₃) hold. Let $\alpha > 1$ and choose $\gamma \leq \frac{\alpha - 1}{\alpha BC^{\frac{1}{2}}}$. Denote $\beta = 1 - \gamma \frac{(\alpha^2 + M)B^2}{2}$. Then: $\mathrm{KL}(\mu_{n+1}|\pi) - \mathrm{KL}(\mu_n|\pi) \le -$

Consequence of (4). Let $\alpha > 1$ and $\gamma < \min\left(\frac{\alpha - 1}{\alpha BC^{\frac{1}{2}}}, \frac{\alpha - 1}{\alpha C^{\frac{1}{2}}}\right)$ $\min_{k=1,...,n} I_{Stein}(\mu_n | \pi) \le \frac{1}{n} \sum_{k=1}^n I_{Stein}(\mu_n | \pi)$

\implies Does not rely on the convexity of V!

Proof of (4): In optimization, descent lemmas are usually obtained under a **smoothness** assumption on the objective. Here, the objective $\mu \mapsto KL(\mu|\pi)$ is **nonsmooth**, since its (Wasserstein) Hessian at μ : $\langle v, H_{\mathrm{KL}(.|\pi)}(\mu)v\rangle_{L^{2}(\mu)} = \underbrace{\mathbb{E}_{X\sim\mu}\left[\langle v(X), H_{V}(X)v(X)\rangle\right]}_{(*)} + \underbrace{\mathbb{E}_{X\sim\mu}\left[\|Jv(X)\|_{HS}^{2}\right]}_{(*)}$

is not bounded over the whole tangent space to $\mathcal{P}_2(\mathbb{R}^d)$ at μ (included in $L^2(\mu)$). However, we can control (**) when restricted to \mathcal{H} under (\mathbf{A}_1) and (\mathbf{A}_3) , while (*) is controlled by (\mathbf{A}_2) .

$$g\left(\frac{\mu_n}{\pi}\right)\Big)_{\#}\mu_n,$$
 (1)

(2)

tion of μ relative to π is defined by :	
$\log\left(rac{\mu}{\pi} ight) \parallel^2_{\mathcal{H}}.$	(3)
(KSD) in the literature, separates the	measures

B and
$$\|\nabla_x k(x,.)\|_{\mathcal{H}} = (\sum_{i=1}^d \|\partial_{x_i} k(x_i,.)\|_{\mathcal{H}_0}^2)^{\frac{1}{2}} \le B$$

 $\exists M > 0 \text{ s.t. } \|H_V\|_{op} \le M.$

$$-\gamma\beta I_{stein}(\mu_n|\pi). \tag{4}$$

$$\frac{2}{2+M)B^2}$$
). Then,
 $in(\mu_k|\pi) \le \frac{\mathrm{KL}(\mu_0|\pi)}{\gamma\beta n}.$
(5)

$$\underbrace{\mathcal{I}}_{(**)}^{\mathcal{I}} + \underbrace{\mathbb{E}}_{X \sim \mu} \left[\underbrace{\mathcal{I}}_{(**)}^{\mathcal{I}} (\Lambda) \right]_{H_{x}}^{\mathcal{I}}$$

where

$$P_{\hat{\mu}_n} \nabla \log\left(\frac{\hat{\mu}_n}{\pi}\right)(\cdot) = \frac{1}{N} \left[\sum_{j=1}^N k(X_n^j, \cdot) \nabla_{X_n^j} \log \pi(X_n^j) + \nabla_{X_n^j} k(X_n^j, \cdot)\right],$$

end $\hat{\mu} = \frac{1}{N} \sum_{i=1}^N \delta_{i-1}$

and $\mu_n = \frac{1}{N} \sum_{j=1}^{n} o_{X_n^j}$.

(**B**₁) Assume that $\exists C_V$ s.t. $\forall x \in ||V(x)|| \leq C_V$.

 (\mathbf{B}_2) Assume that $\exists D > 0$ s.t. : $|k(x, x') - k(y, y')| \le D(||x - y|| + ||x' - y'||),$ $\|\nabla k(x, x') - \nabla k(y, y')\| \le D(\|x - y\| + \|x' - y'\|)$ for all $x, x', y, y' \in \mathbb{R}^d$.

Propagation of chaos result.

have : $\mathbb{E}[W_2^2]$

- [1] Jackson Gorham and Lester Mackey. Measuring sample quality with kernels. In *ICML*, 2017.
- [2] Qiang Liu. Stein variational gradient descent as gradient flow. In NIPS, 2017.
- [3] Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian inference algorithm. In NIPS, 2016.

Finite number of particles regime

In the finite number of particles regime, SVGD [3] algorithm updates a set of N particles $(X_n^i)_{i=1,...,N}$, particles as:

$$X_{n+1}^{i} = X_{n}^{i} - \gamma P_{\hat{\mu}_{n}} \nabla \log\left(\frac{\hat{\mu}_{n}}{\pi}\right) (X_{n}^{i}), \qquad (6)$$

We assume the following.

Let $n \geq 0$ and T > 0. Let μ_n and $\hat{\mu}_n$ be defined by (2) and (6) respectively. Under Assumption $(A_1), (A_2), (B_1), (B_2);$ for any $0 \le n \le \frac{T}{\gamma}$ we

	$\left[2(\mu_n,\hat{\mu}_n)\right] \le \frac{1}{2}$	$\left(\frac{1}{\sqrt{N}}\sqrt{N}\right)$	$\overline{var(\mu_0)}e^{LT}$	$(e^{2LT} - 1)$
--	---	---	-------------------------------	-----------------

where L is a constant depending on k and π .

References