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Part I: Presentation of the method



A particle algorithm for sampling from unnormalized densities.

X Combines Normalizing Flows (NFs) and Sequential Monte Carlo methods for
increased flexibility and adaptivity to the sampling task.

X Provides consistent estimates when the number of particles increases.
X Using NFs can provably reduce the asymptotic variance of the estimates.
X Interpretation of AFT as an optimal control problem for a weighted SDE.
X Provides a modular plug-and-play implementation.
X Competitive results compared to challenging benchmarks.



Sampling from intractable densities

Target π(x) = Z−1e−V (x)

I Goal 1: Sampling from a target
density π known up to a normalizing
constant Z.

I Goal 2: Estimating the normalizing
constant Z.



Sampling from intractable densities: Applications
Bayesian statistics, Compression, Statistical physics, Chemistry.

Estimating the effects of
non-pharmaceutical interventions on

COVID-19 in Europe.
See Flaxman, Mishra, Gandy et al.

Nature 2020.

FermiNet project.
See Pfau, Spencer, Matthews and

Foulkes.
Physical Review Research 2020.



Sampling from intractable densities: Challenges

Target π(x) = Z−1e−V (x)

Challenges:
I Curse of dimensionality.
I Multimodality.
I Limitations of SOTA methods:

I Accurate estimates require careful
design of the algorithms like AIS
[Neal, 2001], SMC [Del Moral et
al., 2006]

I Tail under-estimation of flow-based
methods [Domke and Sheldon
2018].



Annealed Flow Transport
We combine SMC methods with NFs to gain the best from both approaches.

π0 = p

β0 = 0

π1 ∝ p1−β1πβ1

β1

πk ∝ p1−βkπβk

βk

πK = π

βK = 1

AFT step AFT step AFT step

I Similarly to SMC: Introduce a sequence of densities πk interpolating between
a proposal p and the target π.

I Sequential sampling: Use samples from πk−1 to compute samples from πk.
I AFT step: combines a Flow transport step followed by standard SMC steps.



Sequential Monte Carlo steps (no flow)
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I Importance Sampling: re-weights particles from k− 1 proportionally to πk
πk−1

.
I Resampling: duplicate particles with large weights and discard those with

small weights. (Recovers AIS (Neal, 2001) if no resampling).
I MCMC step: Move particles according to a Markov Kernel Kk with invariant

distribution πk: (HM, Gibbs-samplers, etc).
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I Estimating normalizing constant Zk sequentially:
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Sequential Monte Carlo steps (no flow)
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Annealed Flow Transport steps (with a flow)

Flow Transport
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I Flow Transport Tk moves Xi
k−1 to new particles X̃i

k close to πk.
I Closed-form expression for the IS weights to correct for inexact flow:

Gk(X,Y) =
πk(Y)
πk−1(X)

|∇Tk(X)|



Annealed Flow Transport steps (with a flow)
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Learning the Normalizing Flows sequentially

πk−1 qT πk

X̃k = T (Xk−1)

≈

I Change of variables: KL as an expectation under πk−1 of a function hT(x)

hT(x) = logπk−1(x)− logπk(T(x))− log |∇T(x)|+ C

I Particle approximation: Use particles Xi
k−1 and weights Wi

k−1 to estimate
expectation of hT under πk−1.
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Theory: Consistency and Asymptotic Normality

I AFT produces estimates πN
K and ZN

K of π and Z using N particles Xi
K and

weights Wi
K.

I Consistency:

πN
K [f ] N−→ π [f ] ,

ZN
K

N−→ Z.

I Central Limit theorem:
√

N
(
πN

K [f ]− π[f ]
)
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√

N
(

ZN
K − Z

)
N−→ N (0,VZ)

I Extends results of SMC algorithms, but proof involve tools from empirical
process theory.

I Variance is optimal if the flows Tk exactly map πk−1 to πk.



Scaling limit: Infinitely many auxiliary densities
I Setting:

I Population limit: Infinitely many particles N → +∞
I Unadjusted Langevin kernel for Kk.
I Continuous-time limit: Infinitely many auxiliary densities (πk)

K
k=1 → (πt)[0,1].

I AFT recovers a weighted controlled diffusion:
I Sample paths X0,t follows a controlled SDE with control αt:

dXt = (α?t (Xt) +∇ logπt(Xt))dt +
√

2dBt

I Sample paths X0,t are re-weighted according to:
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I Weights ensure the marginals of weighted diffusion match πt exactly.
I Instantaneous work gαs measures how much the density of Xt differs from πt.
I Optimal control α? obtained by minimizing the variance of Instantaneous work:
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Annealed Flow Transport

π0 = p

β0 = 0

π1 ∝ p1−β1πβ1

β1

πk ∝ p1−βkπβk

βk

πK = π

βK = 1

AFT step AFT step AFT step

I AFT extends SMC to take advantage of Normalizing flows.
I Known asymptotic behavior
I Known scaling limit
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