Annealed Flow Transport Monte Carlo

Michael Arbel »1T  Alexander G. D. G. Matthews *2  Arnaud Doucet 2

*Equal Contribution

1Gatsby Computational Neuroscience Unit, UCL, UK,

§

JKcaTsey

2DeepMind
fCurrently at INRIA, Grenoble Rhéne-Alpes, France 0 Deelend



Part |: Presentation of the method



A particle algorithm for sampling from unnormalized densities.
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Combines Normalizing Flows (NFs) and Sequential Monte Carlo methods for
increased flexibility and adaptivity to the sampling task.

Provides consistent estimates when the number of particles increases.
Using NFs can provably reduce the asymptotic variance of the estimates.
Interpretation of AFT as an optimal control problem for a weighted SDE.
Provides a modular plug-and-play implementation.

Competitive results compared to challenging benchmarks.



Sampling from intractable densities

Target 7(z) = Z eV ()

» Goal 1: Sampling from a target
density = known up to a normalizing
constant Z.

» Goal 2: Estimating the normalizing
constant Z.




Sampling from intractable densities: Applications

Bayesian statistics, Compression, Statistical physics, Chemistry.
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Estimating the effects of
non-pharmaceutical interventions on
COVID-19 in Europe.

See Flaxman, Mishra, Gandy et al.
Nature 2020.

FermiNet project.
See Pfau, Spencer, Matthews and
Foulkes.
Physical Review Research 2020.



Sampling from intractable densities: Challenges

Target 7(z) = Z e V(@)
Challenges:
» Curse of dimensionality.

» Multimodality.
» Limitations of SOTA methods:

» Accurate estimates require careful
design of the algorithms like AIS
[Neal, 2001], SMC [Del Moral et
al., 2006]

» Tail under-estimation of flow-based

. methods [Domke and Sheldon

2018].
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Annealed Flow Transport
We combine SMC methods with NFs to gain the best from both approaches.
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» Similarly to SMC: Introduce a sequence of densities 7 interpolating between
a proposal p and the target 7.

» Sequential sampling: Use samples from m,_; to compute samples from 7.

» AFT step: combines a Flow transport step followed by standard SMC steps.



Sequential Monte Carlo steps (no flow)

1S Resampling MCMC
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» Importance Sampling: re-weights particles from k — 1 proportionally to %

» Resampling: duplicate particles with large weights and discard those with
small weights. (Recovers AIS (Neal, 2001) if no resampling).

» MCMC step: Move particles according to a Markov Kernel K; with invariant
distribution 7;: (HM, Gibbs-samplers, etc).



Sequential Monte Carlo steps (no flow)

1S Resampling MCMC
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» Estimating normalizing constant Z, sequentially:

2 =2, (Z Wiy G )

i=1 k-1 (X;i_1>



Sequential Monte Carlo steps (no flow)

IS+Resampling MCMC
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Annealed Flow Transport steps (with a flow)

Flow Transport IS + Resampling MCMC
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» Flow Transport Ty moves X _, to new particles Xi close to .

» Closed-form expression for the IS weights to correct for inexact flow:
m(Y)

Tr—1(X)

Gi(X,Y) = IVT(X)]



Annealed Flow Transport steps (with a flow)

Flow Transport IS + Resampling MCMC
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» Estimating normalizing constant Z; sequentially:
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Learning the Normalizing Flows sequentially

Tk—1 qr
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Learning the Normalizing Flows sequentially

Th—1 qr ~
mTin KL (qp||my)

Tk



Learning the Normalizing Flows sequentially

Tk—1 qr ~ Tk
min KL (gr[|m)
- : Change of
X =T (X}_1) variables
—_— , ) mTinth(x)m,l(x)dx

» Change of variables: KL as an expectation under m;_; of a function hy(x)

hr(x) = log m_1(x) — log m(T(x)) — log [VT(x)| + C



Learning the Normalizing Flows sequentially

Th—1 qr = Tymp_1 ~ T
mTin KL (qp||my)
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» Change of variables: KL as an expectation under 7,_; of a function hr(x)
hr(x) = log mx_1(x) — log m(T(x)) —log [VT(x)| + C

» Particle approximation: Use particles X. , and weights Wi _, to estimate
expectation of hy under m;_1.



Theory: Consistency and Asymptotic Normality

> AFT produces estimates =¥ and Z¥ of = and Z using N particles X} and
weights Wi.
» Consistency:
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» Central Limit theorem:
VN (xR[f] = =If]) = N0, V7If)
VN (zy - z) Ny (0, V7

» Extends results of SMC algorithms, but proof involve tools from empirical
process theory.

» Variance is optimal if the flows T} exactly map my_1 to .



Scaling limit: Infinitely many auxiliary densities

» Setting:
» Population limit: Infinitely many particles N — +oco
» Unadjusted Langevin kernel for K.
» Continuous-time limit: Infinitely many auxiliary densities (mc)f_; — ()01
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Scaling limit: Infinitely many auxiliary densities

» Setting:

» Population limit: Infinitely many particles N — +oco

» Unadjusted Langevin kernel for K.

» Continuous-time limit: Infinitely many auxiliary densities (mc)f_; — ()01
» AFT recovers a weighted controlled diffusion:

» Sample paths X ; follows a controlled SDE with control a;:

dX; = (of (X;) + Vog m(X;))dt + v2dB;
Sample paths X, ; are re-weighted according to:

v

w;l ( 0 t] = exp </ gs d5> g?(Xs) = divx(ozt) + atTVx log T+ 8t IOg T

Weights ensure the marginals of weighted diffusion match =; exactly.
Instantaneous work ¢§ measures how much the density of X; differs from ;.
Optimal control a* obtained by minimizing the variance of Instantaneous work:

a* = %arg min /01 dt (m[(gtaf] — m[g?]2) )
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Annealed Flow Transport
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» AFT extends SMC to take advantage of Normalizing flows.
» Known asymptotic behavior
» Known scaling limit
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