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Motivation

Problem
X Setting: data distributions

with small intrinsic
dimension embedded in a
space with high extrinsic
dimension.

X Example: Includes data
such as natural images
(Thiry et al. 2021).

X Goal: Flexible models
exploiting low intrinsic
dimensionality.

Intrinsic vs extrinsic dimensions
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Motivation
Modeling data with low dimensional support and multiple modes.
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Motivation
Modeling data with low dimensional support and multiple modes.

I Explicit models put mass on the whole space: blurring effect.
I Implicit models are wasteful: it throws the critic away (Azadi et al. 2019).



GEBMs: A new class of models for data with low intrinsic dimension
X Combines Implicit and Explicit models.
X Improves over GANs by using the critic information for sampling.
X Improves over EBMs by allowing their support to be learnable and

low-dimensional.
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Generalized energy-based models
GEBMs are defined by a combination of the two components: energy and base

I The base Gθ maps a prior latent
noise Z ∼ η using a generator Gθ

X ∼ Gθ ⇐⇒ X = Gθ(Z), Z ∼ η

I The energy E defines importance
weights on the support of Gθ

w(X) ∝ exp(−E(X))



Generalized energy-based models
GEBMs are defined by a combination of the two components: energy and base

I The base learns the
low-dimensional support of the
data.

I The energy refines the mass on
the low-dimensional support of the
base.



Adversarial Training for GEBMs
Training with computational cost as GANs Goodfellow et al. 2014 and alternates
between two stages

I Energy E: analogous to a critic in an f -GAN (Nowozin et al. 2016) and is
learned by maximum likelihood with amortized estimation of the log-partition c
of the model: maxE,cF(E, c).

I Base Gθ: analogous to a generator in an f -GAN and is learned by minimizing
the KL Approximate Lower-bound Estimator KALE(P|Gθ) := maxE,cF(E, c).



Sampling from GEBMs using Latent MCMC
Sampling from GEBM requires:

I Producing a posterior latent noise Z ∼ ν using MCMC with

ν(Z) ∝ η(Z)e−E(Gθ(Z))

I Mapping the posterior noise using the generator X = Gθ(Z).



Sampling from GEBMs using Latent MCMC
Various MCMC sampler can be used and yield different behaviors.

I Overdamped samplers (like ULA) stick to a particular mode within each chain.
I Kinetic samplers (like HMC) explore multiple modes within the same chain.
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Sampling from GEBMs using Latent MCMC

X Sampling using MCMC in latent space exploits gradient information of the
discriminator to accelerate mixing.
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Conclusion

GEBM: A new family of models bridging the gap between GANs and EBMs.

X Modeling data with small intrinsic dimension:
I The base learns the low dimensional support of data
I The energy refines the distribution of mass on the base.

X Adversarial training
X Latent MCMC sampling
X Improves over GANs and EBMs

Code:
https://github.com/MichaelArbel/GeneralizedEBM

Thank you !
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