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Data with low intrinsic dimension: Natural Images1

Topographical Ordering of
ImageNet patches

1Thiry, Arbel, Belilovsky, and Oyallon, “The Unreasonable Effectiveness of Patches in Deep
Convolutional Kernels Methods”.
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Generalized Energy-Based Models
GEBMs are defined by a combination of the two components: energy and base

I The base learns the
low-dimensional support of the
data:

X ∼ B, ⇐⇒ X = Gθ(Z), Z ∼ η

I Samples are re-weighted
according to importance weights
defined by the energy:

w(X) ∝ exp(−E(X))

y X = Gθ(Z)

y w(X)
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GEBMs are also obtained by first re-weighting the latent then applying Gθ

y w(Gθ(Z))

y X = Gθ(Z)

I Latents are sampled according
to a ’posterior’ distribution:

ν(Z) = η(Z)w(Gθ(Z))

I Latents are mapped to sample
space using the implicit map Gθ:

X = Gθ(Z)



Generalized Energy-Based Models: Why Generalized ?

I A GEBM can be written formally in terms of the base Bθ and energy E:

dQ(X) ∝ exp(−E(X)) dBθ(X)

I If the energy E is constant, Q is simply an implicit model:

dQ(X) = dBθ(X)

I If the base is full dimensional and has a density pθ, Q is a standard EBM:

dQ(X) ∝ exp(−E(X))pθ(X) dX.

I GEBM is a generalization of those models that takes the best of both worlds.
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Learn the energy E using Generalized Log-Likelihood and keep the base Bθ fixed.
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Training the energy: Amortized estimation
Learn the energy E using Generalized Log-Likelihood and keep the base Bθ fixed.

LP,B(E) := −EP[E(X)]− log(Zθ,E)

I Amortized estimation using a lower-bound on the log-likelihood:

LP,B(E) ≥− EP[E(X) + c]− EBθ [exp(−(E(X) + c))] + 1
:=FP,B(E + c)

I Tight whenever c = log(Zθ,E)

I Jointly maximizing FP,B(E, c) yields the maximum likelihood energy E? and
corresponding c? = log(Zθ,E?).

I Parameter c keeps a memory of previous mini-batches.
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Training the base: KALE minimization

I Recall: Optimal energy E? learned by keeping the base Bθ fixed and
maximizing:

FP,Bθ(E + c) = −EP[E(X) + c]− EBθ [exp(−(E(X) + c))] + 1

I Define the KL Approximate Lower-bound Estimator (KALE) to be

KALE(P,Bθ) := FP,Bθ(E? + c?)

I KALE defines a divergence between distributions ... if the set of energies E is
rich enough: (ex: an MLP, an RKHS, etc).

I Learn the base Bθ by minimizing KALE(P,Bθ) using SGD.
I Is the gradient well-defined? Is it smooth enough?
I Lack of smoothness can result in instabilities during training2

2Chu, Minami, and Fukumizu, “Smoothness and Stability in GANs”.
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Training the base: Smoothness of KALE

I The loss results from an optimization:

KALE(P,Bθ) = sup
E,c
FP,Bθ(E + c)

I The gradient is expected to be of the form:

∇θKALE(P,Bθ) = ∇θFP,Bθ(E? + c?)

I No guarantees this holds in general: needs additional assumptions.
I Typical assumptions rely on convexity3 of FP,Bθ(E + c) in the parameters of E ,

or measure smoothness assumptions4 : too strong in this case.

3Sanjabi, Ba, Razaviyayn, and Lee, “Solving Approximate Wasserstein GANs to Stationarity”.
4Chu, Minami, and Fukumizu, “Smoothness and Stability in GANs”.
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Theorem (An enveloppe theorem)
KALE(P,Bθ) is Lipschitz and differentiable for almost all θ ∈ Θ with:

∇θKALE(P,Bθ) = Eνθ,E? [∇xE?(Gθ(Z))∇θGθ(Z)]

with νθ,E? being the re-weighted latent distribution: νθ,E?(Z) ∝ exp(−E?(Gθ(Z))).
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Training GEBM: Summary
GEBMs are defined by:

dQθ,E(X) ∝ exp(−E(X)) dBθ(X)

Training alternates between:
I Training the energy: Maximize the lower-bound FP,Bθ(E + c) on the

generalized log-likelihood.
I Training the base: Minimize KALE(P,Bθ)

Can we guarantee that the GEBM Q is getting closer to P?

Theorem
If the set of energies E is convex, then:

KALE(P,Qθ,E?) ≤ 2KALE(P,Bθ)

where E? maximizes the generalized Bθ log-likelihood



Training GEBM: Does it really learn Maximum likelihood ?
Particular instance for GEBM:

I The base Bθ(X) is a Real NVP6 (closed form density exp(hθ(X)) )
I The Energy is of the form E(X) = rψ(X)− hθ(X)

I For this choice, GEBM is equivalent to an EBM of the form

dQθ,E(X) ∝ exp(−rψ(X)) dX.

6Dinh, Sohl-Dickstein, and Bengio, “Density estimation using Real NVP”.
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GEBMs are defined by dQθ,E(X) = w(X) dBθ(X) with w(X) ∝ exp(−E(X)).

y X = Gθ(Z)

I Latents are sampled according
to a ’posterior’ distribution:
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I Latents are mapped to sample
space using the implicit map Gθ:

X = Gθ(Z)



Sampling from GEBMs: Latent space MCMC
GEBMs are defined by dQθ,E(X) = w(X) dBθ(X) with w(X) ∝ exp(−E(X)).

y X = Gθ(Z∞)

I Latents are sampled according
to a ’posterior’ distribution:

ν(Z) = η(Z)w(Gθ(Z))

I In practice, use MCMC

Wk+1 ∼ N (0, I)

Zk+1 = Zk + γ∇z log ν(Zk) +
√

2γWk+1

I Latents are mapped to sample
space using the implicit map Gθ:

X = Gθ(Z)



Outline

I Data with low intrinsic dimension: The need for new models
I Generalized Energy-Based models: A model with two components

I The base
I The energy

I Training GEBMs: a two stages method
I Learning the energy: Generalized Maximum Likelihood Estimation
I Learning the base : KALE minimization

I Sampling from GEBMs
I Latent space MCMC
I Experimental validation on image datasets.

I Conclusion and future work



Sampling from GEBMs: Latent space MCMC



Sampling for Generalized EBMs

I Relative FID score: FID(Qθ,E)
FID(Bθ) .
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For a given base Bθ and energy E trained using KALE, samples from the GEBM
are always better (FID score) than samples from the base alone.



Sampling from GEBMs: Jumping between modes

Other samplers (ex. Hamiltonian Monte Carlo) allows better mode exploration
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I Sampling performed by Latent space MCMC
I Improves over sampling from the base alone (as done in GANs)
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I Sampling performed by Latent space MCMC
I Improves over sampling from the base alone (as done in GANs)

Future directions:
I Can training GEBMs be improved?

I Better than a two-step training (one step?)
I Is latent space MCMC beneficial during training7?

I Generalization of GEBMs
I Do the modes defined by the energy match training samples? Is it bad8?

7Wu et al., “LOGAN: Latent Optimisation for Generative Adversarial Networks”.
8Belkin, Rakhlin, and Tsybakov, “Does data interpolation contradict statistical optimality?”



Thank you!



Estimating Intrinsic dimension9

I For a sample X, find the k-NNs
X1, ...,Xk

I Compute distances
Tj(X) = ‖X − Xj‖

I Estimate dimension at point X:

d(X) =

 1
k− 1

k−1∑
j=1

log
Tk(X)

Tj(X)

−1

I Average over several points X
and values of k.

Nearest Neighbor dimension

0 500 1000
dext

15
20
25
30
35
40

dint

imagenet32
cifar10

9Levina and Bickel, “Maximum likelihood estimation of intrinsic dimension”.
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Data

z ∼ Unif [0, 1]

z̃ =
↓
τ (z)

X =
↓
Gθ? (z̃), X1 = z̃
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EBM

p(X) ∝ exp(−E(X))

E(X) =
1

2σ2 ‖Gθ(X1)− X‖2

+ Aθ(X1)

Data

z ∼ Unif [0, 1]

z̃ =
↓
τ (z)

X =
↓
Gθ? (z̃), X1 = z̃
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Data with low intrinsic dimension: A toy example

EBM

Data

z ∼ Unif [0, 1]

z̃ =
↓
τ (z)

X =
↓
Gθ? (z̃), X1 = z̃

GAN

Generator
z ∼ unif [0, 1]

X =
↓
Gθ (z)

∣∣∣∣∣∣∣∣
Critic
MLP(X)
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