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Data with low intrinsic dimension: Natural Images'

Topographical Ordering of
ImageNet patches

"Thiry, Arbel, Belilovsky, and Oyallon, “The Unreasonable Effectiveness of Patches in Deep
Convolutional Kernels Methods”.



Data with low intrinsic dimension: Natural Images'

Topographical Ordering of Nearest Neighbor dimension
ImageNet patches
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"Thiry, Arbel, Belilovsky, and Oyallon, “The Unreasonable Effectiveness of Patches in Deep
Convolutional Kernels Methods”.
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» Gets the weights...

» But blurs the
samples

» Needs powerful
energy models

Can we do better?

GAN
» Gets the support...
» Requires powerful
generators
» Wasteful: throws
away the critic
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Generalized Energy-Based Models

GEBMs are defined by a combination of the two components: energy and base

» The base learns the Z~1
low-dimensional support of the l X = Go(2)
data:

X~B, <<= X=Gp(Z), Z~n

» Samples are re-weighted
according to importance weights
defined by the energy:

w(X) x exp(—E(X)) l w(X)

"\
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Generalized Energy-Based Models: Latent space view
GEBMs are also obtained by first re-weighting the latent then applying Gy

zZ~n » Latents are sampled according
to a 'posterior’ distribution:
| wiGa2) v(Z) = (2)0(Go(2))
Z~V
l X =Go(Z) » Latents are mapped to sample

space using the implicit map Gy:

/\/ X =Gy(2)
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Generalized Energy-Based Models: Why Generalized ?
» A GEBM can be written formally in terms of the base By and energy E:
dQ(X) o exp(~E(X)) dBy(X)
» If the energy E is constant, Q is simply an implicit model:
dQ(X) = dBy(X)
» If the base is full dimensional and has a density py, Q is a standard EBM:
dQ(X) o exp(—E(X))pg(X) dX.

» GEBM is a generalization of those models that takes the best of both worlds.
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Training the energy: Generalized Maximum Likelihood
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Training the energy: Generalized Maximum Likelihood

Definition (Generalized Likelihood)
The expected By-log-likelihood under a target distribution P of a GEBM model Q
with base By and energy E is defined as

Lop(E) = — / E(x)dP(x) — log(Ze.z).

» Dependence on By through Zg g = Eg, [exp(—E(X))].
» When KL(PP, By) is well defined: called Donsker-Varadhan lower bound on KL.
» Tight when E(X) = —log (£ (X))
» However, Generalized Log-Likelihood is still well defined when P and By are
mutually singular
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Training the energy: Generalized Maximum Likelihood

Learn the energy E using Generalized Log-Likelihood and keep the base By fixed.
'CP,]B(E) = —EP[E(X)] — log(Zng).

» Learn parameters of E using SGD. Log partition estimation

» Naive estimation of the normalizing 10-1 — Naive estimation =
constant can have large variance
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log(Zg E) = log < Z exp(—
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Training the energy: Amortized estimation

Learn the energy E using Generalized Log-Likelihood and keep the base By fixed.

Lpp(E) := —Ep[E(X)] —log(Zos,e)

v

Amortized estimation using a lower-bound on the log-likelihood:

Lpw(E) = — Ep[E(X) + c] — Ep, [exp(—(E(X) +¢))] + 1
.ZfP,B(E +C)

v

Tight whenever c = log(Zs k)

Jointly maximizing Fp(E, ) yields the maximum likelihood energy E* and
corresponding ¢* = log(Zg ).

Parameter c keeps a memory of previous mini-batches.
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Training the base: KALE minimization

» Recall: Optimal energy E* learned by keeping the base By fixed and
maximizing:

Fpp,(E+c) = —Ep[E(X) + c] — Ep,[exp(—(E(X) +¢))] + 1
» Define the KL Approximate Lower-bound Estimator (KALE) to be
KALE(P, B@) = .7:[{»7139 (E* + C*)

» KALE defines a divergence between distributions ... if the set of energies £ is
rich enough: (ex: an MLP, an RKHS, etc).

» Learn the base By by minimizing KALE(P, By) using SGD.
» |s the gradient well-defined? Is it smooth enough?
» Lack of smoothness can result in instabilities during training®

2Chu, Minami, and Fukumizu, “Smoothness and Stability in GANs”.



Training the base: Smoothness of KALE
» The loss results from an optimization:

KALE(P,By) = sup Fpg,(E + )
Ec

» The gradient is expected to be of the form:
V@KALE(P, Bg) = V@fp’]ge (E* + C*)

» No guarantees this holds in general: needs additional assumptions.

» Typical assumptions rely on convexity® of Fp g, (E + c) in the parameters of E ,
or measure smoothness assumptions* : too strong in this case.

3Sanjabi, Ba, Razaviyayn, and Lee, “Solving Approximate Wasserstein GANSs to Stationarity”.
4Chu, Minami, and Fukumizu, “Smoothness and Stability in GANs”.
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Theorem (An enveloppe theorem)
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Training the base: Smoothness of KALE

Theorem (An enveloppe theorem)
KALE(PP,By) is Lipschitz and differentiable for almost all 6 € © with:
VyKALE(P,By) = Ey, .. [V+E*(Go(Z))VeGa(Z)]
with vg g~ being the re-weighted latent distribution: vy gx(Z) o« exp(—E*(Gg(Z2))).
Assumptions:
» Energies in £ parameterized by i) € ¥, where ¥ is compact. Jointly
continuous in (¢, x) and L-smooth w.r.t. x.
» (0,z) — Gy(z) L-Lipschitz in z and smooth wrt 6.
Proof idea:

» Characterization of differentiability for supremum-type functions®:
» Expressions for left and right partial derivatives of the loss. Expressions match
when 0 — Ej is continuous.
» Differentiability holds iff 6 — E} is continuous.
» Prove differentiability using Radamacher theorem.
SMilgrom and Segal, “Envelope Theorems for Arbitrary Choice Sets”.
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Training GEBM: Summary
GEBMs are defined by:

dQp,r(X) ox exp(—E(X)) dBy(X)

Training alternates between:

» Training the energy: Maximize the lower-bound Fp g, (E + c) on the
generalized log-likelihood.

» Training the base: Minimize KALE(PP, By)
Can we guarantee that the GEBM Q is getting closer to P?

Theorem
If the set of energies £ is convex, then:

KALE(P, Qp £+) < 2KALE(P, By)

where E* maximizes the generalized By log-likelihood



Training GEBM: Does it really learn Maximum likelihood ?

Particular instance for GEBM:
» The base By (X) is a Real NVP® (closed form density exp(/5(X)) )
» The Energy is of the form E(X) = ry(X) — hy(X)
» For this choice, GEBM is equivalent to an EBM of the form

dQp r(X) ox exp(—ry(X)) dX.

®Dinh, Sohl-Dickstein, and Bengio, “Density estimation using Real NVP”.



Training GEBM: Does it really learn Maximum likelihood ?

Particular instance for GEBM:
» The base By (X) is a Real NVP® (closed form density exp(/5(X)) )
» The Energy is of the form E(X) = r,(X) — hg(X)
» For this choice, GEBM is equivalent to an EBM of the form

dQp r(X) ox exp(—ry(X)) dX.
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Sampling from GEBMSs: Latent space MCMC
GEBMs are defined by dQy £(X) = w(X) dBy(X) with w(X) o exp(—E(X)).

» Latents are sampled according
to a 'posterior’ distribution:

2=V v(Z) = n(Z)w(Ge(Z))
» In practice, use MCMC

X = Co(7 Wk+1 ~ N(Ovl)
l = Go(Zeo) Ziy1 = Zx +yVzlogv(Zy) + /27Wia

» Latents are mapped to sample
space using the implicit map Gy:

N\ X = Gy(Z)
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Sampling from GEBMSs: Latent space MCMC




Sampling for Generalized EBMs

» Relative FID score: F;?D(%)ég)_

100-
s IHM [Turner et al., 2019]
[0) -
§ 80 DOT (tanaka 2019]
S 60- [ Langevin (ours)
w
2 40
-
o
Q
oz 20-
0-
Cifarl0 LSUN CelebA Imagenet

For a given base By and energy E trained using KALE, samples from the GEBM
are always better (FID score) than samples from the base alone.



Sampling from GEBMs: Jumping between modes

Other samplers (ex. Hamiltonian Monte Carlo) allows better mode exploration

- -

g el e o PP
' h 1=L




Summary

GEBMSs are models tailored for data with low intrinsic dimension

Combine the strength of both Implicit (the base ) and Explicit models (the
energy)

Two stages training : alternating optimization on the base and energy
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Summary

» GEBMSs are models tailored for data with low intrinsic dimension

Combine the strength of both Implicit (the base ) and Explicit models (the
energy)

Two stages training : alternating optimization on the base and energy

v

v

v

Sampling performed by Latent space MCMC
» Improves over sampling from the base alone (as done in GANSs)

Future directions:
» Can training GEBMs be improved?

» Better than a two-step training (one step?)
» s latent space MCMC beneficial during training” ?

» Generalization of GEBMs
» Do the modes defined by the energy match training samples? Is it bad®?

"Wu et al., “LOGAN: Latent Optimisation for Generative Adversarial Networks”.
8Belkin, Rakhlin, and Tsybakov, “Does data interpolation contradict statistical optimality?”



Thank you!



Estimating Intrinsic dimension®

Nearest Neighbor dimension
» For a sample X, find the k-NNs ¢

X1, o0, Xp
» Compute distances 40
Ti(X) = X - Xj| .
» Estimate dimension at point X:
30
k—1 -
I < X | g 20
dX)=|——=)> log int
k—1 ]z; T;(X) 20
e imagenet32
» Average over several points X 15 w—cifart0
and values of k. 0 500 1000

dext

SLevina and Bickel, “Maximum likelihood estimation of intrinsic dimension”.
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Data with low intrinsic dimension: A toy example

o
Data
EBM
p(X) x exp(—E(X)) z ~ Unif [0, 1]
~ 1
E(X) = [Gox) - X Z=7 ()

! -
+ Ag(X1) X =G (2), X1=z
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Data with low intrinsic dimension: A toy example

N

Data

EBM GAN

z ~ Unif[0, 1]

3 =7 (2)

4 ~
X =Gy~ (Z), X1=z



Data with low intrinsic dimension: A toy example

/ ’\/
Data
EBM GAN
z ~ Unif[0,1] Generator

. ) MLP(X)
X =Go- (2), X1=2 X =Gy (2)
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