Kernelized Wasserstein Natural Gradient

Michael Arbel ! Arthur Gretton! Wuchen Li2 Guido Montufar 23

1Gatsby Computational Neuroscience Unit, UCL, London
2University of California, Los Angeles

3Max Planck Institute for Mathematics in the Sciences, Leipzig

April 9, 2020

KWNG: A natural gradient optimizer with built in Optimal Transport Geometry.
v Approximately Invariant to re-parametrization

Well-conditioned parametrization lll-conditioned parametrization

90

W SGD M SGD+M W SGD+M+WD = Adam m KFAC eKFAC B KWNG (ours)

% Accuracy
w ul ~
o o o

o

Cifar10 classification task using ResNet-18 networks.

KWNG: A natural gradient optimizer with built in Optimal Transport Geometry.
v Approximately Invariant to re-parametrization

Well-conditioned parametrization lll-conditioned parametrization

90 B
> >
&) (@)
S0 S0
>S5 >
(9] Q
) Q
< <
X 50 X 50

0 100 200 300 0 100 200 300
Epochs Epochs

W SGD B SGD+M W SGD+M+WD Adam I KFAC eKFAC B KWNG (ours)

Cifar10 classification task using ResNet-18 networks.

KWNG: A natural gradient optimizer with built in Optimal Transport Geometry.

V' Approximately invariant to re-parametrization
v Fast and scalable

M basils points Model with p parameters

&
<

Memory: O(Mp + M?)
Time: O((M + 1) x cost(Backprop) + M?)

M + 1 Backpropagations

l—_l_l

Batch of size N Mxm LUM onm

KWNG: A natural gradient optimizer with built in Optimal Transport Geometry.

V' Approximately invariant to re-parametrization
v Fast and scalable
v~ Can be used as a drop-in optimizer

kwng KWNG, KWNGWrapper
gaussian Gaussian
kernel Gaussian

KWNGEstimator KWNG (kernel,
num_basis= 10,
eps= le-4
w_optimizer KWNGWrapper (optimizer,
criterion,
net,
KWNGEstimator
loss, pred w_optimizer.step (inputs, targets

Euclidean Gradient

» Learning problem: §* = argminy £L(py)

» Update equation: 61 = 0 + \Dy

. 1
Dy = arg min VoL (pe,) u+ §||u||2

Euclidean Gradient

» Learning problem: 6* = argming £(py)
» Update equation: 61 = 0 + \Dy

. 1
Dy = argmuanQ[,(pek)Tu + E||u||2

» Different re-parametrization: ¢ = s(6)

Fisher Natural Gradient

» Learning problem: 6* = argming £(py)
» Update equation: 61 = 0 + A Dy

2
KL (p9k|~| p9k+u)

1
Dy = argmin VoL(pg,) '+ = u' Gp(fy)u
u N———

» Fisher information matrix:

GE(8) = B, [Vo log(ps)(X) Vs log(0) (X) |
Pros:

> Invariant to parametrization

Invariance to re-parametrization
F
VEL (pg)

Po

t

/ﬂ\?wn

Peox

Pox

vV Z(p,)

P,

Invariance to re-parametrization

VEL(5,)

» Re-parametrization: ¢ = ¥(6) and write g, = pg.
» Invariance to re-parametrization: = 1y = ¥(6;)

Fisher Natural Gradient

» Learning problem: 6* = argming £(py)
» Update equation: 61 = 0 + A Dy

2
KL (p9k|~| p9k+u)

Dy = argmin VoL (pg,) 't + E u' Gp(6y)u
u N———

» Fisher information matrix:

GE(8) = B, [Vo log(ps)(X) Vs log(0) (X) |
Pros: Cons:

» Invariant to parametrization » Not scalable, but efficient approximations exist:
[Martens and Grosse, 2015, Grosse and Martens, 2016]

» lll-suited for implicit models:
XNp9<:>X:h9(Z), Z~v

Wasserstein Natural Gradient (1 and vontar, 2018

» Learning problem: §* = argminy £L(py)

» Update equation: 6,1 = 6y + A Dy

1
Dy = argmin VoL(pg,) ' u+ = ' Gw(Op)u
u 2 —

W% (p9k) p9k+u)

» Wasserstein information matrix: Gy (0)

Pros: Cons:
» Invariant to parametrization > Not-secalable
» Works with implicit model > -H-suited-forimplicitmodets:

» Scalable approximation

Wasserstein Natural Gradient: The Gaussian Family

) [rnimns
AM

Wasserstein Natural Gradient: The Gaussian Family

2)i= [l

10°

1072

(x, 11, 2

1074

107

1078

—

= WNG
— EG
= FNG

10° 10! 107

10°

Wasserstein Natural Gradient (1 and vontar, 2018

» Learning problem: §* = argminy £L(py)

» Update equation: 6,1 = 6y + A Dy

1
Dy = argmin VoL(pg,) u+ =~ u' Gw(Op)u
u 2 —

~

W% (p9k) p9k+u)

» Wasserstein information matrix: Gy (6)

Pros: Cons:
» Invariant to parametrization > Not-secalable
» Works with implicit model > -H-suited-forimplicitmodets:

» Scalable approximation

Dynamic formulation of the Wasserstein distance

Dynamic formulation of the Wasserstein distance

- inf / / 16)2 dpi(x)dt, Bppr + div(psdt) =

Dynamic formulation of the Wasserstein distance

» The Wasserstein distance as a geodesic distance

Wip.q) = inf / / 164)2 dpr(0)dt, Dupr + dio(pid) = 0

Dynamic formulation of the Wasserstein distance

» The Wasserstein distance as a geodesic distance

wﬁpqzig;/u/wt|ﬁmt dt, dps + div(pid') = 0

» Wasserstein metric:

&@ﬁ:/WWW®m,&WMWF0

Dynamic formulation of the Wasserstein distance

» The Wasserstein distance as a geodesic distance

wﬁpqzig;/u/wt|ﬁmt dt, dps + div(pid') = 0

» Wasserstein metric:
$0(0.)i= [Io(x)|Pdp(x), 5+ div(p0) = 0.
» Wasserstein Information matrix:

4T Gy ()1t = g,y (Vo] 1, Vool) = /W\WM)

Vepg u+div(pgg) = 0.

The triple tricks

» The duality trick: Variational expression for elliptic equations:

Vpg tt + div(pgdu) = 0

!

1
sup Vo, [F(X)) 1~ Sy, [IIVF(X)I1]
fece()

The triple tricks
» The duality trick: Variational expression for elliptic equations:
Vp;)ru + div(pppy) =0
1

T 2 1 2
S G0 = 5 [16IPdps = = sup VoB (0] u - 5 [V

The triple tricks
» The duality trick: Variational expression for elliptic equations:
Vet + div(pgdy) = 0
L 2d E g, TIveeo)?
S Gw(d I6]%dpe = sup VoEp,[f(X)] u 5 Epo [IVF(X)]
fece(Q)
» The reparametrization trick:

VoE[f(X)]u =By [Vof ((Z)] u, X=go(Z), Z~n

The triple tricks
» The duality trick: Variational expression for elliptic equations:
Vp;)ru + div(pppy) =0
1

T 2 1 2
S G0 = 5 [16IPdps = = sup VoB (0] u - 5 [V

» The reparametrization trick:

VoE[f(X)]u =By [Vof ((Z)] u, X=go(Z), Z~n

» The kernel trick: Choose a nice kernel k and find solutions of the form:

Z m®;, k(Xm, x) C My

Saddle-point formulation

l’nuil’l Vgﬁ(pg)Tu + %MTGw(Q)u

|

u fE'HM

» H,s contains functions of the form:

Z am0;, (X, X)

. 1
min sup VoL(pe) "+ VoBy, [F(X)]T 1~ 5By, [IVFX)I?

Saddle-point formulation

damping
1 €
min VoL(pe) u+ E1Jc;w(9)u+ §y|uy|2
ﬂ damping
: T T 1 2 €112
min sup VoL(ps) "1+ VoEy, [F(X)] 1~ 5By, [IVFX)I2] + 5lul

fe€HM

» H contains functions of the form:

M
f) =" om0, k(Xn, x)

m=1

Saddle-point formulation

1
min VoL (po) "+ 5" Gw(0)u + gHuHZ

I

. 1 €
sup min VL(po) u+ VoEy, [F(X)] Tt~ Epy [INFGIIP] + S u?
feHM

» H contains functions of the form:
M
F) =" cm, k(Xn, x)
m=1
» Optimal /* obtained by solving a quadratic problem of size M in (a4, ..., aum)
» Wasserstein natural descent direction:
* (VoLpa,) + Vo, [(X))

€

Dy =

Infinitely many features with kernels!

» Kernel: "similarity" function k(x,y) € R
» e.g. gaussian kernel

1
k(x,y) = exp(— == llx — y[1?)
20

Infinitely many features with kernels!

» Kernel: "similarity" function k(x,y) € R
» e.g. gaussian kernel

k(x,y) = exp(—3 || x—yl?)

» Reproducing kernel Hilbert space H contains functions of the form:

Zam may Zam rnay

Infinitely many features with kernels!

» Kernel: "similarity" function k(x,y) € R
» e.g. gaussian kernel

1
k(x,y) = exp(— 55l = ylP’)

» Reproducing kernel Hilbert space H contains functions of the form:

Zam may Zam rnay

» But H is much blgger. can be dense on C(2).

Infinitely many features with kernels!

» Kernel: "similarity" function k(x,y) € R
» e.g. gaussian kernel

k(x,y) = exp(—3 || x—yl?)

» Reproducing kernel Hilbert space H contains functions of the form:

Zam may Zam rnay

» But H is much blgger. can be dense on C(2).
» Reproducing property:

f(y) = <f7k(x7)>H

Infinitely many features with kernels!

» Kernel: "similarity" function k(x,y) € R
» e.g. gaussian kernel

k(x,y) = exp(—3 || x—yl?)

v

Reproducing kernel Hilbert space H contains functions of the form:

Zam may Zam rnay

But H is much blgger. can be dense on C(2).
Reproducing property:

v

v

f(y) = <f7k(x7)>H

Inner product (., .)» defined implicitly using k:
> <k(x7 ')a k(%)>7‘L = k(x7y)

v

Representer Theorem

» General Loss function of the form:

L) = [RUOFOnsisa)p(x.y) + MR,

Representer Theorem

» General Loss function of the form:
1
L) = [RUOFOnsisa)p(x.y) + MR,

» Empirical version using samples (X, Yy,):
1N

L(f) = 55 D°R@F(X), Vo) + 2 AIf I,

n

Representer Theorem

» General Loss function of the form:
1
L) = [RUOFOnsisa)p(x.y) + MR,
» Empirical version using samples (X, Yy,):
. 1 & 1
L(f) = N ZR(aLf(Xn), Yn) + QMVH%{

» Representer theorem says: Optimal empirical solution of the form:

f*y) = Z i Ok (X, y)

Representer Theorem

» General Loss function of the form:
1
L) = [RUOFOnsisa)p(x.y) + MR,

» Empirical version using samples (X, Yy,):

. 1 1

L(f) = N ZR(aLf(Xn), Yn) + QMVH%{

n

» Representer theorem says: Optimal empirical solution of the form:

f*y) = Z i Ok (X, y)

» Only need to find «: solve finite dimensional optimization problem.

Representer Theorem and Nystrom Methods

» Optimal empirical solution of the form:
W) = oni0k(Xu,y)
n,i

» Expensive to compute o, ;: cost in time O(N3d®) for quadratic loss
» Nystrom method ': Reduce computational cost:

Zam m,y

Representer Theorem and Nystrom Methods

» Optimal empirical solution of the form:
W) = oni0k(Xu,y)
n,i

» Expensive to compute o, ;: cost in time O(N3d®) for quadratic loss
» Nystrom method ': Reduce computational cost:

Z a0, Xm,

M sub-samples from (X;)1<i<n

Representer Theorem and Nystrom Methods

» Optimal empirical solution of the form:
W) = oni0k(Xu,y)
n,i

» Expensive to compute o, ;: cost in time O(N3d®) for quadratic loss
» Nystrom method ': Reduce computational cost:

Z a0, Xm,

T

Randomly sampled from {1,...,d} M sub-samples from (X;);<i<n

KWNG: Sample based version

» After some further calculations:

vWL() ~

a | =

(1 @T(TTT + 2K+ eCCT)TT> VL(0)

» Similar to a Woodbury matrix identity

KWNG: Sample based version

» After some further calculations:

T := V7 (60) with 7(0) = £ SN, 0, k(Xon, ho(Z2)

—_

vWL(9) ~ - (1 - #T(TTT K+ eccT)TT) VL(0)

€

» Similar to a Woodbury matrix identity

KWNG: Sample based version

» After some further calculations:

T := V7 (60) with 7(0) = £ SN, 0, k(Xon, ho(Z2)

—_

VL) ~ - (1 - #T(TTT + Ae? + eccT)TT) VL(0)

mm’ a 8 /+dk(Xm7Xm’)

» Similar to a Woodbury matrix identity

KWNG: Sample based version

» After some further calculations:

T := V7 (60) with 7(0) = £ SN, 0, k(Xon, ho(Z2)

—_

vWL(9) ~ - (1 - #T(TTT K+ eccT)TT) VL(0)

€ T T
mm’ 0; a /+dk(Xm7Xm’) Cm,(n,i) = \fa a—l—dk(vaX)

» Similar to a Woodbury matrix identity

Theory
How small M can be and still be sure it works?

10% .
’ Gaussian Model

» Need fewer basis points M 4,
than data points N

M=~ VN

» Relative error decreases
with more data (N — +o0)

6%

error

4%

2%

1

R ~ —
error 1 0%

N1 0 1000 2000 3000 4000
N

5000

Theory: Consistency and convergence rates

Main assumption: Let ¢, be the solution to the PDE:
Vgt + div(pgdy) =0

For any precision « > 0, there exists f € H:

/ 6w — Vf|Pdpe <5 Ilfllo < Cre

Theory: Consistency and convergence rates

Main assumption: Let ¢, be the solution to the PDE:
Vgt + div(pgdy) =0

For any precision « > 0, there exists f € H:

/ 6w — Vf|Pdpe <5 Ilfllo < Cre

Theorem
Let § be such that0 < § < 1. Under additional mild assumptions, for N large

enough, M ~ (dN ite log(N)), A~ N e and e < N~#, it holds with probability at
least1 — ¢ that:

IVVL©) - T2 = O(N75).

Experimental evaluation: Synthetic models

Relative error

10%

8%

6%

4%

2%

0%

(a)

Gaussians: X = u + O’%Z,

10%

8%

6%

4%

2%

0%

0

(b)

1000 2000 3000 4000
N

Z ~ N(0,1)

5000

10%

8%

6%

4%

2%

0%

(c)

10t 10?

10

coaoaaaoacaaaaq

W

FNWAUON®O R

o

Experimental evaluation: Sensitivity to the choice of the kernel

Relative error

» Gaussian kernel k(x, y) = exp(— IIXTTyHZ)

10%

8%

6%

4%

2%

0%

sphere

Relative error

10%

8%

6%

4%

2%

0%

gaussian

Relative error

C

10%

8%

6%

4%

2%

0%

log_normal

o
IN)

coaoaooQ
{L I T (A | I

oo s N

o

o

Experimental evaluation: Optimization trajectory

» Gaussian model for pg

» Loss functional £(ps) = W53(pe, pe+)-

1073
10-8
10—13

10—18

Cost function

10—23

10—28

(a) Loss function per iteration

— KNWG
— GD
— NWG

10?

103
Iterations

104

10°

200
100

< ~100
-200
-300
-400

(b) Projection of the trajectories

Initial value
Optimal value

200 400 600 800 1000
X1

Experimental evaluation: Classification task

Well-conditioned problem:

min £(ps) := / ((ho(2),Y) du(Z, Y)

80
60
40
20

o

GD SGD+M SGD+M+WD Adam KFAC eKFAC KWNG(M=5)

Accuracy

Experimental evaluation: Classification task

lll-conditioned problem:
min £(py) = / ((Uhy(2),Y) du(Z, Y)

U is a diagonal matrix with x = 107

60
40
20

0

GD SGD+M SGD+M+WD Adam KFAC eKFAC KWNG(M=5)

Accuracy

Ablation study

» Choice of the damping matrix D(6)
» Choice of the kernel (gaussian vs rational quadratic)

100

% accuracy
(<)) ©
o o

N
o

N
o

(a) Training accuracy: (IC)

—

I

100

200
Epochs

300

80

% accuracy
()]
o

N
o

20

(b) Test accuracy: (IC)

fr

100

200
Epochs

300

Diagonal conditioning: D = |||
Diagonal conditioning: D = ||T||
KWNG: D=/

KWNG: D =T

KWNG: D = ||T||

KWNG: D = ||T| (rg-kernel)

Conclusion

Summary of contributions
» Proposed to use Wasserstein natural gradient for ill-conditioned problems.
» A new algorithm to estimate the Wasserstein natural gradient

» Convergence rate: trade-off between computational complexity and statistical
accuracy

Conclusion

Summary of contributions
» Proposed to use Wasserstein natural gradient for ill-conditioned problems.
» A new algorithm to estimate the Wasserstein natural gradient

» Convergence rate: trade-off between computational complexity and statistical
accuracy

Limitation:
» Sensitive to the choice of the damping/regularization.
» Additional hyper-parameters to tune (kernel, basis points,...)
» Accuracy of the estimation quickly degrades with the dimension.

» Ridgeless estimator seems much more accurate in practice but no
guarantees yet.

Future work:

» When can one clearly benefit from WNG: Natural Evolution Strategies
?

» Application to meta-learning: Can the Wasserstein be a good proximity
measure between several tasks.
» Implicit Policy Optimization:

» Useful for more complex action space) (sequence of
actions).

» TRPO can’t be used in this case, but WNG can.

Thank you !

KWNG: Ridgeless version

» Additional structure when \ = 0:

YWL(H) =+ (1 —TT(TTT + XeK + eccT)TT) VL(0)

€

KWNG: Ridgeless version

» Additional structure when \ = 0:

o —

VWL(9) =

| =

(1 T(TTT + eccT)TT) VL(0)

KWNG: Ridgeless version

» Additional structure when \ = 0:

VWL(0) =

| =

(1 T(TTT + eCCT)TT) VL(0)
» Chain rule for T

ng k(Yu,ho(Z,)) = T =CB, B, = Vghy(Zy)

KWNG: Ridgeless version

» Additional structure when \ = 0:
YWL(0) = (1-BTCT(CBBTCT + ccCT)iCB) V()

€

» Chain rule for T:

nga k(Yum,ho(Z,)) = T =CB, B, = Vghy(Zy)

KWNG: Ridgeless version

» Additional structure when \ = 0:
YWL(0) = (1-BTCT(CBBTCT + ccCT)iCB) V()

€

» Chain rule for T:

nga k(Yum,ho(Z,)) = T =CB, B, = Vghy(Zy)

» 'Simplify’ C by computing an SVD : CCT = Usu’

T=stu'cB, P=s's

KWNG: Ridgeless version

» Additional structure when \ = 0:

VWL(0) =

a | =

» Chain rule for T:

(1 _TTAITT + ep)*T) VL)

nga k(Y ho(Zy)) = T=CB, B, = Vyhy(

» 'Simplify’ C by computing an SVD : CCT = usu’

T=stu'cB, P=s's

Zy)

KWNG: Ridgeless version

» Additional structure when \ = 0:

—

vWL() =

a | =

(I ~TH(TT" + eP)TT) VL)
» Chain rule for T:

Im

Zvea k(Y ho(Zy)) = T=CB, B, = Veho(Z,)

» 'Simplify’ C by computing an SVD : CCT = USU "

T =s'u'cs, p=s's

» No consistency result for the Ridgeless estimator yet.

KWNG: Ridgeless version

Additional structure when \ = 0:

—

VL) =

—

(I ~T(TTT +eCCT)t T) VL(0)

o | =

KWNG: Ridgeless version

Additional structure when \ = 0:

VWL(6) =

o | =

(1 S THTTT + eCCT)TT> VL(0)

Zve k(Ym, ho(Zn))

KWNG: Ridgeless version

Additional structure when \ = 0:

—

VL) =

—

(I ~T(TTT +eCCT)t T) VL(0)

o | =

KWNG: Ridgeless version

Additional structure when \ = 0:

—

VWL() =

| =

(1 _BTCT(CBBTCT + eCCT)TCB) VL)

T=CB, B,=Vehy(Z,)

KWNG: Ridgeless version

Additional structure when \ = 0:

—

VWL() =

| =

(1 _BTCT(CBBTCT + eCCT)TCB) VL)

T=CB, B,=Vhy(Z,)
'Simplify’ C:

T=stu'r, p=sts
where CCT = Usu"

KWNG: Ridgeless version

Additional structure when \ = 0:

—

vWL() =

—

(1 STAITT + eP)TT) VL(0)

a | =

'Simplify’ C:
T=su'T, pP=5's

where CCT = Usu"

[§ Benamou, J.-D. and Brenier, Y. (2000).
A computational fluid mechanics solution to the monge-kantorovich mass
transfer problem.
Numerische Mathematik, 84(3):375-393.

[§ Grosse, R. and Martens, J. (2016).
A Kronecker-factored Approximate Fisher Matrix for Convolution Layers.
In Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, ICML’16, pages 573-582.
JMLR.org.
event-place: New York, NY, USA.

[§ Li, W. and Montufar, G. (2018).
Natural gradient via optimal transport.
arXiv:1803.07033 [cs, math].
arXiv: 1803.07033.

[§ Martens, J. and Grosse, R. (2015).

Optimizing Neural Networks with Kronecker-factored Approximate Curvature.
ar¥n/18N0R NER71 lre ctatl

