## Kernelized Wasserstein Natural Gradient

Michael Arbel ${ }^{1}$ Arthur Gretton ${ }^{1}$ Wuchen Li ${ }^{2}$ Guido Montufar 2,3<br>${ }^{1}$ Gatsby Computational Neuroscience Unit, UCL, London<br>${ }^{2}$ University of California, Los Angeles<br>${ }^{3}$ Max Planck Institute for Mathematics in the Sciences, Leipzig

April 9, 2020

KWNG: A natural gradient optimizer with built in Optimal Transport Geometry. $\checkmark$ Approximately Invariant to re-parametrization

Well-conditioned parametrization


Cifar10 classification task using ResNet-18 networks.

KWNG: A natural gradient optimizer with built in Optimal Transport Geometry. $\checkmark$ Approximately Invariant to re-parametrization

Well-conditioned parametrization


III-conditioned parametrization


- SGDAdam
- 

KFACeKFAC

KWNG (ours)

Cifar10 classification task using ResNet-18 networks.

KWNG: A natural gradient optimizer with built in Optimal Transport Geometry.
$\checkmark$ Approximately invariant to re-parametrization
$\checkmark$ Fast and scalable


KWNG: A natural gradient optimizer with built in Optimal Transport Geometry.
$\checkmark$ Approximately invariant to re-parametrization
$\checkmark$ Fast and scalable
$\checkmark$ Can be used as a drop-in optimizer

```
from kwng import KWNG, KWNGWrapper
from gaussian import Gaussian
kernel = Gaussian()
KWNGEstimator = KWNG (kernel,
    num_basis= 10,
    eps=1e-4 )
w_optimizer = KWNGWrapper(optimizer,
    criterion,
    net,
    KWNGEstimator)
loss,pred = w_optimizer.step(inputs, targets)
```


## Euclidean Gradient

- Learning problem: $\theta^{*}=\arg \min _{\theta} \mathcal{L}\left(p_{\theta}\right)$
- Update equation: $\theta_{k+1}=\theta_{k}+\lambda \mathcal{D}_{k}$

$$
\mathcal{D}_{k}=\arg \min _{u} \nabla_{\theta} \mathcal{L}\left(p_{\theta_{k}}\right)^{\top} u+\frac{1}{2}\|u\|^{2}
$$

## Euclidean Gradient

- Learning problem: $\theta^{*}=\arg \min _{\theta} \mathcal{L}\left(\rho_{\theta}\right)$
- Update equation: $\theta_{k+1}=\theta_{k}+\lambda \mathcal{D}_{k}$

$$
\mathcal{D}_{k}=\arg \min _{u} \nabla_{\theta} \mathcal{L}\left(\rho_{\theta_{k}}\right)^{\top} u+\frac{1}{2}\|u\|^{2}
$$

- Different re-parametrization: $\psi=s(\theta)$


## Fisher Natural Gradient

- Learning problem: $\theta^{*}=\arg \min _{\theta} \mathcal{L}\left(\rho_{\theta}\right)$
- Update equation: $\theta_{k+1}=\theta_{k}+\lambda \mathcal{D}_{k}$

$$
\mathcal{D}_{k}=\arg \min _{u} \underbrace{\nabla_{\theta}\left(\rho_{\theta_{k}}\right)^{\top} u+\frac{1}{2} \underbrace{u^{\top} G_{F}\left(\theta_{k}\right) u}}_{K L\left(p_{\theta_{k}} \tilde{\|} \mid p_{\theta_{k}+u}\right)}
$$

- Fisher information matrix:

$$
G_{F}(\theta)=\mathbb{E}_{\rho_{\theta}}\left[\nabla_{\theta} \log \left(\rho_{\theta}\right)(X) \nabla_{\theta} \log \left(\rho_{\theta}\right)(X)^{\top}\right]
$$

## Pros:

- Invariant to parametrization


## Invariance to re-parametrization



## Invariance to re-parametrization



- Re-parametrization: $\psi=\Psi(\theta)$ and write $\tilde{\rho}_{\psi}=\rho_{\theta}$.
- Invariance to re-parametrization: $\Rightarrow \psi_{t}=\Psi\left(\theta_{t}\right)$


## Fisher Natural Gradient

- Learning problem: $\theta^{*}=\arg \min _{\theta} \mathcal{L}\left(\rho_{\theta}\right)$
- Update equation: $\theta_{k+1}=\theta_{k}+\lambda \mathcal{D}_{k}$

$$
\mathcal{D}_{k}=\arg \min _{u} \underbrace{\nabla_{\theta}\left(\rho_{\theta_{k}}\right)^{\top} u+\frac{1}{2} \underbrace{u^{\top} G_{F}\left(\theta_{k}\right) u}}_{K L\left(p_{\theta_{k}} \tilde{\|} \mid p_{\theta_{k}+u}\right)}
$$

- Fisher information matrix:

$$
G_{F}(\theta)=\mathbb{E}_{\rho_{\theta}}\left[\nabla_{\theta} \log \left(\rho_{\theta}\right)(X) \nabla_{\theta} \log \left(\rho_{\theta}\right)(X)^{\top}\right]
$$

Pros:

- Invariant to parametrization

Cons:

- Not scalable, but efficient approximations exist: [Martens and Grosse, 2015, Grosse and Martens, 2016]
- III-suited for implicit models:

$$
X \sim \rho_{\theta} \Longleftrightarrow X=h_{\theta}(Z), \quad Z \sim \nu
$$

## Wasserstein Natural Gradient [Li and Montufar, 2018]

- Learning problem: $\theta^{*}=\arg \min _{\theta} \mathcal{L}\left(p_{\theta}\right)$
- Update equation: $\theta_{k+1}=\theta_{k}+\lambda \mathcal{D}_{k}$

$$
\mathcal{D}_{k}=\arg \min _{u} \underbrace{\nabla_{\theta}\left(p_{\theta_{k}}\right)^{\top} u+}_{W_{2}^{2}\left(p_{\theta_{k}}, p_{\theta_{k}+u}\right)}
$$

- Wasserstein information matrix: $G_{W}(\theta)$


## Pros:

- Invariant to parametrization
- Works with implicit model


## Cons:

- Not scalable
- III-suited for implicit models:
- Scalable approximation

Wasserstein Natural Gradient: The Gaussian Family

$$
\mathcal{L}(\mu, \Sigma):=\int f(x) \mathcal{N}(x, \mu, \Sigma) d x
$$



Wasserstein Natural Gradient: The Gaussian Family

$$
\mathcal{L}(\mu, \Sigma):=\int f(x) \mathcal{N}(x, \mu, \Sigma) d x
$$



## Wasserstein Natural Gradient [Li and Montufar, 2018]

- Learning problem: $\theta^{*}=\arg \min _{\theta} \mathcal{L}\left(p_{\theta}\right)$
- Update equation: $\theta_{k+1}=\theta_{k}+\lambda \mathcal{D}_{k}$

$$
\mathcal{D}_{k}=\arg \min _{u} \nabla_{\theta} \mathcal{L}\left(p_{\theta_{k}}\right)^{\top} u+\frac{1}{2} \underbrace{u^{\top} G_{W}\left(\theta_{k}\right) u}_{W_{2}^{2}\left(p_{\theta_{k}}, p_{\theta_{k}+u}\right)}
$$

- Wasserstein information matrix: $G_{W}(\theta)$

Pros:

- Invariant to parametrization
- Works with implicit model

Cons:

- Not scalable
- III-suited for implicit models:
- Scalable approximation


## Dynamic formulation of the Wasserstein distance



## Dynamic formulation of the Wasserstein distance



## Dynamic formulation of the Wasserstein distance

- The Wasserstein distance as a geodesic distance [Benamou and Brenier, 2000]

$$
W_{2}^{2}(p, q):=\inf _{\left(\rho_{t}, \phi_{t}\right)} \int_{0}^{1} \int\left\|\phi^{t}(x)\right\|^{2} \mathrm{~d} \rho_{t}(x) d t, \quad \partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} \phi^{t}\right)=0
$$

## Dynamic formulation of the Wasserstein distance

- The Wasserstein distance as a geodesic distance [Benamou and Brenier, 2000]

$$
W_{2}^{2}(p, q):=\inf _{\left(\rho_{t}, \phi_{t}\right)} \int_{0}^{1} \int\left\|\phi^{t}(x)\right\|^{2} \mathrm{~d} \rho_{t}(x) d t, \quad \partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} \phi^{t}\right)=0
$$

- Wasserstein metric:

$$
g_{\rho}(\delta, \delta):=\int\|\phi(x)\|^{2} \mathrm{~d} \rho(x), \quad \delta+\operatorname{div}(\rho \phi)=0
$$

## Dynamic formulation of the Wasserstein distance

- The Wasserstein distance as a geodesic distance [Benamou and Brenier, 2000]

$$
W_{2}^{2}(p, q):=\inf _{\left(\rho_{t}, \phi_{t}\right)} \int_{0}^{1} \int\left\|\phi^{t}(x)\right\|^{2} \mathrm{~d} \rho_{t}(x) d t, \quad \partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} \phi^{t}\right)=0
$$

- Wasserstein metric:

$$
g_{\rho}(\delta, \delta):=\int\|\phi(x)\|^{2} \mathrm{~d} \rho(x), \quad \delta+\operatorname{div}(\rho \phi)=0
$$

- Wasserstein Information matrix:

$$
\begin{aligned}
u^{\top} G_{W}(\theta) u:=g_{\rho_{\theta}}\left(\nabla_{\theta} \rho_{\theta}^{\top} u, \nabla_{\theta} \rho_{\theta}^{\top} u\right) & =\int\|\phi(x)\|^{2} d \rho_{\theta}(x) \\
\nabla_{\theta} \rho_{\theta}^{\top} u+\operatorname{div}\left(\rho_{\theta} \phi\right) & =0 .
\end{aligned}
$$

## The triple tricks

- The duality trick: Variational expression for elliptic equations:

$$
\begin{gathered}
\nabla \rho_{\theta}^{\top} u+\operatorname{div}\left(\rho_{\theta} \phi_{u}\right)=0 \\
\sup _{f \in C_{c}^{\infty}(\Omega)} \nabla_{\theta} \mathbb{E}_{\rho_{\theta}}[f(X)]^{\top} u-\frac{1}{2} \mathbb{E}_{\rho_{\theta}}\left[\|\nabla f(X)\|^{2}\right]
\end{gathered}
$$

## The triple tricks

- The duality trick: Variational expression for elliptic equations:

$$
\begin{gathered}
\nabla \rho_{\theta}^{\top} u+\operatorname{div}\left(\rho_{\theta} \phi_{u}\right)=0 \\
\frac{1}{2} u^{\top} G_{W}(\theta) u=\frac{1}{2} \int\|\phi\|^{2} d \rho_{\theta}=\sup _{f \in C_{c}^{\infty}(\Omega)} \nabla_{\theta} \mathbb{E}_{\rho_{\theta}}[f(X)]^{\top} u-\frac{1}{2} \mathbb{E}_{\rho_{\theta}}\left[\|\nabla f(X)\|^{2}\right]
\end{gathered}
$$

## The triple tricks

- The duality trick: Variational expression for elliptic equations:

$$
\begin{gathered}
\nabla \rho_{\theta}^{\top} u+\operatorname{div}\left(\rho_{\theta} \phi_{u}\right)=0 \\
\frac{1}{2} u^{\top} G_{W}(\theta) u=\frac{1}{2} \int\|\phi\|^{2} d \rho_{\theta}=\sup _{f \in C_{c}^{\infty}(\Omega)} \nabla_{\theta} \mathbb{E}_{\rho_{\theta}}[f(X)]^{\top} u-\frac{1}{2} \mathbb{E}_{\rho_{\theta}}\left[\|\nabla f(X)\|^{2}\right]
\end{gathered}
$$

- The reparametrization trick:

$$
\nabla_{\theta} \mathbb{E}_{\rho_{\theta}}[f(X)]^{\top} u=\mathbb{E}_{\eta}\left[\nabla_{\theta} f\left(g_{\theta}(Z)\right)\right]^{\top} u, \quad X=g_{\theta}(Z), \quad Z \sim \eta
$$

## The triple tricks

- The duality trick: Variational expression for elliptic equations:

$$
\begin{gathered}
\nabla \rho_{\theta}^{\top} u+\operatorname{div}\left(\rho_{\theta} \phi_{u}\right)=0 \\
\frac{1}{2} u^{\top} G_{W}(\theta) u=\frac{1}{2} \int\|\phi\|^{2} d \rho_{\theta}=\sup _{f \in C_{c}^{\infty}(\Omega)} \nabla_{\theta} \mathbb{E}_{\rho_{\theta}}[f(X)]^{\top} u-\frac{1}{2} \mathbb{E}_{\rho_{\theta}}\left[\|\nabla f(X)\|^{2}\right]
\end{gathered}
$$

- The reparametrization trick:

$$
\nabla_{\theta} \mathbb{E}_{\rho_{\theta}}[f(X)]^{\top} u=\mathbb{E}_{\eta}\left[\nabla_{\theta} f\left(g_{\theta}(Z)\right)\right]^{\top} u, \quad X=g_{\theta}(Z), \quad Z \sim \eta
$$

- The kernel trick: Choose a nice kernel $k$ and find solutions of the form:

$$
\hat{f}(x)=\sum_{m=1}^{M} \alpha_{m} \partial_{i_{m}} k\left(X_{m}, x\right) \subset \mathcal{H}_{M}
$$

## Saddle-point formulation

$$
\begin{gathered}
\min _{u} \nabla_{\theta} \mathcal{L}\left(p_{\theta}\right)^{\top} u+\frac{1}{2} u^{\top} G_{W}(\theta) u \\
\min _{u} \sup _{f \in \mathcal{H}_{M}} \nabla_{\theta} \mathcal{L}\left(p_{\theta}\right)^{\top} u+\nabla_{\theta} \mathbb{E}_{p_{\theta}}[f(X)]^{\top} u-\frac{1}{2} \mathbb{E}_{p_{\theta}}\left[\|\nabla f(X)\|^{2}\right]
\end{gathered}
$$

- $\mathcal{H}_{M}$ contains functions of the form:

$$
f(x)=\sum_{m=1}^{M} \alpha_{m} \partial_{i_{m}} k\left(X_{m}, x\right)
$$

## Saddle-point formulation

$$
\min _{u} \overbrace{\nabla_{\theta} \mathcal{L}\left(p_{\theta}\right)^{\top} u+\frac{1}{2} u^{\top} G_{W}(\theta) u+\overbrace{\frac{\epsilon}{2}\|u\|^{2}}^{\text {damping }}}^{\min _{u} \sup _{f \in \mathcal{H}_{M}} \nabla_{\theta} \mathcal{L}\left(p_{\theta}\right)^{\top} u+\nabla_{\theta} \mathbb{E}_{p_{\theta}}[f(X)]^{\top} u-\frac{1}{2} \mathbb{E}_{p_{\theta}}\left[\|\nabla f(X)\|^{2}\right]+\overbrace{\frac{\epsilon}{2}\|u\|^{2}}^{\text {damping }}}
$$

- $\mathcal{H}_{M}$ contains functions of the form:

$$
f(x)=\sum_{m=1}^{M} \alpha_{m} \partial_{i_{m}} k\left(X_{m}, x\right)
$$

## Saddle-point formulation

$$
\begin{gathered}
\min _{u} \nabla_{\theta} \mathcal{L}\left(p_{\theta}\right)^{\top} u+\frac{1}{2} u^{\top} G_{W}(\theta) u+\frac{\epsilon}{2}\|u\|^{2} \\
\sup _{f \in \mathcal{H}_{M}} \min _{u} \nabla_{\theta} \mathcal{L}\left(p_{\theta}\right)^{\top} u+\nabla_{\theta} \mathbb{E}_{p_{\theta}}[f(X)]^{\top} u-\frac{1}{2} \mathbb{E}_{p_{\theta}}\left[\|\nabla f(X)\|^{2}\right]+\frac{\epsilon}{2}\|u\|^{2}
\end{gathered}
$$

- $\mathcal{H}_{M}$ contains functions of the form:

$$
f(x)=\sum_{m=1}^{M} \alpha_{m} \partial_{i_{m}} k\left(X_{m}, x\right)
$$

- Optimal $f^{\star}$ obtained by solving a quadratic problem of size $M$ in $\left(\alpha_{1}, \ldots, \alpha_{M}\right)$
- Wasserstein natural descent direction:

$$
\widehat{\mathcal{D}}_{k}=-\frac{1}{\epsilon}\left(\nabla_{\theta} \mathcal{L}\left(p_{\theta_{k}}\right)+\nabla_{\theta} \mathbb{E}_{p_{\theta_{k}}}\left[f^{\star}(X)\right]\right)
$$

## Infinitely many features with kernels!

- Kernel: "similarity" function $k(x, y) \in \mathbb{R}$
- e.g. gaussian kernel

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

## Infinitely many features with kernels!

- Kernel: "similarity" function $k(x, y) \in \mathbb{R}$
- e.g. gaussian kernel

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- Reproducing kernel Hilbert space $\mathcal{H}$ contains functions of the form:

$$
f(y)=\sum_{m}^{M} \alpha_{m} k\left(X_{m}, y\right), \quad f(y)=\sum_{m}^{M} \alpha_{m} \partial_{i_{m}} k\left(X_{m}, y\right)
$$

## Infinitely many features with kernels!

- Kernel: "similarity" function $k(x, y) \in \mathbb{R}$
- e.g. gaussian kernel

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- Reproducing kernel Hilbert space $\mathcal{H}$ contains functions of the form:

$$
f(y)=\sum_{m}^{M} \alpha_{m} k\left(X_{m}, y\right), \quad f(y)=\sum_{m}^{M} \alpha_{m} \partial_{i_{m}} k\left(X_{m}, y\right)
$$

- But $\mathcal{H}$ is much bigger: can be dense on $C_{b}(\Omega)$.


## Infinitely many features with kernels!

- Kernel: "similarity" function $k(x, y) \in \mathbb{R}$
- e.g. gaussian kernel

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- Reproducing kernel Hilbert space $\mathcal{H}$ contains functions of the form:

$$
f(y)=\sum_{m}^{M} \alpha_{m} k\left(X_{m}, y\right), \quad f(y)=\sum_{m}^{M} \alpha_{m} \partial_{i_{m}} k\left(X_{m}, y\right)
$$

- But $\mathcal{H}$ is much bigger: can be dense on $C_{b}(\Omega)$.
- Reproducing property:

$$
f(y)=\langle f, k(x, .)\rangle_{\mathcal{H}}
$$

## Infinitely many features with kernels!

- Kernel: "similarity" function $k(x, y) \in \mathbb{R}$
- e.g. gaussian kernel

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- Reproducing kernel Hilbert space $\mathcal{H}$ contains functions of the form:

$$
f(y)=\sum_{m}^{M} \alpha_{m} k\left(X_{m}, y\right), \quad f(y)=\sum_{m}^{M} \alpha_{m} \partial_{i_{m}} k\left(X_{m}, y\right)
$$

- But $\mathcal{H}$ is much bigger: can be dense on $C_{b}(\Omega)$.
- Reproducing property:

$$
f(y)=\langle f, k(x, .)\rangle_{\mathcal{H}}
$$

- Inner product $\langle., .\rangle_{\mathcal{H}}$ defined implicitly using $k$ :
- $\langle k(x, .), k(y, .)\rangle_{\mathcal{H}}=k(x, y)$


## Representer Theorem

- General Loss function of the form:

$$
L(f)=\int \mathcal{R}\left(\left(\partial_{i} f(x)\right)_{1 \leq i \leq d}, y\right) d p(x, y)+\frac{1}{2} \lambda\|f\|_{\mathcal{H}}^{2}
$$

## Representer Theorem

- General Loss function of the form:

$$
L(f)=\int \mathcal{R}\left(\left(\partial_{i} f(x)\right)_{1 \leq i \leq d}, y\right) d p(x, y)+\frac{1}{2} \lambda\|f\|_{\mathcal{H}}^{2}
$$

- Empirical version using samples $\left(X_{n}, Y_{n}\right)$ :

$$
\hat{L}(f)=\frac{1}{N} \sum_{n}^{N} \mathcal{R}\left(\partial_{i} f\left(X_{n}\right), Y_{n}\right)+\frac{1}{2} \lambda\|f\|_{\mathcal{H}}^{2}
$$

## Representer Theorem

- General Loss function of the form:

$$
L(f)=\int \mathcal{R}\left(\left(\partial_{i} f(x)\right)_{1 \leq i \leq d}, y\right) d p(x, y)+\frac{1}{2} \lambda\|f\|_{\mathcal{H}}^{2}
$$

- Empirical version using samples $\left(X_{n}, Y_{n}\right)$ :

$$
\hat{L}(f)=\frac{1}{N} \sum_{n}^{N} \mathcal{R}\left(\partial_{i} f\left(X_{n}\right), Y_{n}\right)+\frac{1}{2} \lambda\|f\|_{\mathcal{H}}^{2}
$$

- Representer theorem says: Optimal empirical solution of the form:

$$
f^{\star}(y)=\sum_{n, i} \alpha_{n, i} \partial_{i} k\left(X_{n}, y\right)
$$

## Representer Theorem

- General Loss function of the form:

$$
L(f)=\int \mathcal{R}\left(\left(\partial_{i} f(x)\right)_{1 \leq i \leq d}, y\right) d p(x, y)+\frac{1}{2} \lambda\|f\|_{\mathcal{H}}^{2}
$$

- Empirical version using samples $\left(X_{n}, Y_{n}\right)$ :

$$
\hat{L}(f)=\frac{1}{N} \sum_{n}^{N} \mathcal{R}\left(\partial_{i} f\left(X_{n}\right), Y_{n}\right)+\frac{1}{2} \lambda\|f\|_{\mathcal{H}}^{2}
$$

- Representer theorem says: Optimal empirical solution of the form:

$$
f^{\star}(y)=\sum_{n, i} \alpha_{n, i} \partial_{i} k\left(X_{n}, y\right)
$$

- Only need to find $\alpha$ : solve finite dimensional optimization problem.


## Representer Theorem and Nystrom Methods

- Optimal empirical solution of the form:

$$
f^{\star}(y)=\sum_{n, i} \alpha_{n, i} \partial_{i} k\left(X_{n}, y\right)
$$

- Expensive to compute $\alpha_{n, i}$ : cost in time $O\left(N^{3} d^{3}\right)$ for quadratic loss
- Nystrom method ${ }^{1}$ : Reduce computational cost:

$$
\hat{f}_{M}^{*}(y)=\sum_{m=1}^{M} \alpha_{m} \partial_{i_{m}} k\left(X_{m}, y\right)
$$

[^0]
## Representer Theorem and Nystrom Methods

- Optimal empirical solution of the form:

$$
f^{\star}(y)=\sum_{n, i} \alpha_{n, i} \partial_{i} k\left(X_{n}, y\right)
$$

- Expensive to compute $\alpha_{n, i}$ : cost in time $O\left(N^{3} d^{3}\right)$ for quadratic loss
- Nystrom method ${ }^{1}$ : Reduce computational cost:

$$
\hat{f}_{M}^{*}(y)=\sum_{m=1}^{M} \alpha_{m} \partial_{i_{m}} k\left(X_{m}, y\right)
$$

[^1]
## Representer Theorem and Nystrom Methods

- Optimal empirical solution of the form:

$$
f^{\star}(y)=\sum_{n, i} \alpha_{n, i} \partial_{i} k\left(X_{n}, y\right)
$$

- Expensive to compute $\alpha_{n, i}$ : cost in time $O\left(N^{3} d^{3}\right)$ for quadratic loss
- Nystrom method ${ }^{1}$ : Reduce computational cost:


[^2]
## KWNG: Sample based version

- After some further calculations:

$$
\nabla^{W} \mathcal{L}(\theta) \approx \frac{1}{\epsilon}\left(I-T^{\top}\left(T T^{\top}+\lambda \epsilon K+\epsilon C C^{\top}\right)^{\dagger} T\right) \nabla \mathcal{L}(\theta)
$$

- Similar to a Woodbury matrix identity


## KWNG: Sample based version

- After some further calculations:

$$
\begin{aligned}
& T:=\nabla \tau(\theta) \text { with } \tau(\theta)_{m}=\frac{1}{N} \sum_{n=1}^{N} \partial_{i_{m}} k\left(X_{m}, h_{\theta}\left(Z_{n}\right)\right. \\
& \quad \nabla^{W} \mathcal{L}(\theta) \approx \frac{1}{\epsilon}\left(I-T^{\top}\left(T T^{\top}+\lambda \epsilon K+\epsilon C C^{\top}\right)^{\dagger} T\right) \nabla \mathcal{L}(\theta)
\end{aligned}
$$

- Similar to a Woodbury matrix identity


## KWNG: Sample based version

- After some further calculations:

$$
\begin{aligned}
& T:=\nabla \tau(\theta) \text { with } \tau(\theta)_{m}=\frac{1}{N} \sum_{n=1}^{N} \partial_{i_{m}} k\left(X_{m}, h_{\theta}\left(Z_{n}\right)\right. \\
& \nabla^{W} \mathcal{L}(\theta) \approx \frac{1}{\epsilon}\left(I-T^{\top}\left(T T^{\top}+\lambda \epsilon K+\epsilon C C^{\top}\right)^{\dagger} T\right) \nabla \mathcal{L}(\theta) \\
& K_{m, m^{\prime}}=\partial_{i_{m}} \partial_{i_{m^{\prime}}+d} k\left(X_{m}, X_{m^{\prime}}\right)
\end{aligned}
$$

- Similar to a Woodbury matrix identity


## KWNG: Sample based version

- After some further calculations:

$$
\begin{aligned}
& T:=\nabla \tau(\theta) \text { with } \tau(\theta)_{m}=\frac{1}{N} \sum_{n=1}^{N} \partial_{i_{m}} k\left(X_{m}, h_{\theta}\left(Z_{n}\right)\right. \\
& \nabla^{W} \mathcal{L}(\theta) \approx \frac{1}{\epsilon}\left(I-T^{\top}\left(T T^{\top}+\lambda \epsilon K+\epsilon C C^{\top}\right)^{\dagger} T\right) \nabla \mathcal{L}(\theta) \\
& K_{m, m^{\prime}}=\partial_{i_{m}} \partial_{i_{m^{\prime}+d}} k\left(X_{m}, X_{m^{\prime}}\right) \quad C_{m,(n, i)}=\frac{1}{\sqrt{N}} \partial_{i_{m}} \partial_{i+d} k\left(X_{m}, X_{n}\right)
\end{aligned}
$$

- Similar to a Woodbury matrix identity


## Theory

How small $M$ can be and still be sure it works?


## Theory: Consistency and convergence rates

Main assumption: Let $\phi_{u}$ be the solution to the PDE:

$$
\nabla \rho_{\theta}^{\top} u+\operatorname{div}\left(\rho_{\theta} \phi_{u}\right)=0
$$

For any precision $\kappa>0$, there exists $f \in \mathcal{H}$ :

$$
\int\left\|\phi_{u}-\nabla f\right\|^{2} d \rho_{\theta} \leq \kappa \quad\|f\|_{\mathcal{H}} \leq C \kappa^{-c}
$$

## Theory: Consistency and convergence rates

Main assumption: Let $\phi_{u}$ be the solution to the PDE:

$$
\nabla \rho_{\theta}^{\top} u+\operatorname{div}\left(\rho_{\theta} \phi_{u}\right)=0
$$

For any precision $\kappa>0$, there exists $f \in \mathcal{H}$ :

$$
\int\left\|\phi_{u}-\nabla f\right\|^{2} d \rho_{\theta} \leq \kappa \quad\|f\|_{\mathcal{H}} \leq C \kappa^{-c}
$$

## Theorem

Let $\delta$ be such that $0 \leq \delta \leq 1$. Under additional mild assumptions, for $N$ large enough, $M \sim\left(d N^{\frac{2+c}{4+c}} \log (N)\right), \lambda \sim N^{\frac{2+c}{4+c}}$ and $\epsilon \lesssim N^{-\frac{1}{4+c}}$, it holds with probability at least $1-\delta$ that:

$$
\left\|\widehat{\nabla^{W} \mathcal{L}(\theta)}-\nabla^{W} \mathcal{L}(\theta)\right\|^{2}=\mathcal{O}\left(N^{-\frac{2}{4+c}}\right)
$$

## Experimental evaluation: Synthetic models

Gaussians: $X=\mu+\sigma^{\frac{1}{2}} Z, \quad Z \sim \mathcal{N}(0, I)$


## Experimental evaluation: Sensitivity to the choice of the kernel

- Gaussian kernel $k(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{\sigma}\right)$





## Experimental evaluation: Optimization trajectory

- Gaussian model for $\rho_{\theta}$
- Loss functional $\mathcal{L}\left(\rho_{\theta}\right)=W_{2}^{2}\left(\rho_{\theta}, \rho_{\theta^{*}}\right)$.

(b) Projection of the trajectories



## Experimental evaluation: Classification task

## Well-conditioned problem:

$$
\min _{\theta} \mathcal{L}\left(\rho_{\theta}\right):=\int \ell\left(h_{\theta}(Z), Y\right) \mathrm{d} \nu(Z, Y)
$$



## Experimental evaluation: Classification task

III-conditioned problem:

$$
\min _{\theta} \mathcal{L}\left(\rho_{\theta}\right):=\int \ell\left(U h_{\theta}(Z), Y\right) \mathrm{d} \nu(Z, Y)
$$

$U$ is a diagonal matrix with $\kappa=10^{7}$


## Ablation study

- Choice of the damping matrix $D(\theta)$
- Choice of the kernel (gaussian vs rational quadratic)



## Conclusion

Summary of contributions

- Proposed to use Wasserstein natural gradient for ill-conditioned problems.
- A new algorithm to estimate the Wasserstein natural gradient
- Convergence rate: trade-off between computational complexity and statistical accuracy


## Conclusion

Summary of contributions

- Proposed to use Wasserstein natural gradient for ill-conditioned problems.
- A new algorithm to estimate the Wasserstein natural gradient
- Convergence rate: trade-off between computational complexity and statistical accuracy

Limitation:

- Sensitive to the choice of the damping/regularization.
- Additional hyper-parameters to tune (kernel, basis points,...)
- Accuracy of the estimation quickly degrades with the dimension.
- Ridgeless estimator seems much more accurate in practice but no guarantees yet.


## Future work:

- When can one clearly benefit from WNG: Natural Evolution Strategies [Wierstra et al., 2011]?
- Application to meta-learning: Can the Wasserstein be a good proximity measure between several tasks.
- Implicit Policy Optimization:
- Useful for more complex action space [Tang and Agrawal, 2019] ) (sequence of actions).
- TRPO [Schulman et al., 2015] can't be used in this case, but WNG can.


## Thank you !

## KWNG: Ridgeless version

- Additional structure when $\lambda=0$ :

$$
\widehat{\nabla^{W} \mathcal{L}(\theta)}=\frac{1}{\epsilon}\left(I-T^{\top}\left(T T^{\top}+\lambda \epsilon K+\epsilon C C^{\top}\right)^{\dagger} T\right) \widehat{\nabla \mathcal{L}(\theta)}
$$

## KWNG: Ridgeless version

- Additional structure when $\lambda=0$ :

$$
\widehat{\nabla^{W} \mathcal{L}(\theta)}=\frac{1}{\epsilon}\left(I-T^{\top}\left(T T^{\top}+\epsilon C C^{\top}\right)^{\dagger} T\right) \widehat{\nabla \mathcal{L}(\theta)}
$$

## KWNG: Ridgeless version

- Additional structure when $\lambda=0$ :

$$
\widehat{\nabla^{W} \mathcal{L}(\theta)}=\frac{1}{\epsilon}\left(I-T^{\top}\left(T T^{\top}+\epsilon C C^{\top}\right)^{\dagger} T\right) \widehat{\nabla \mathcal{L}(\theta)}
$$

- Chain rule for $T$ :

$$
T_{m}=\frac{1}{N} \sum_{n=1}^{N} \nabla_{\theta} \partial_{i_{m}} k\left(Y_{m}, h_{\theta}\left(Z_{n}\right)\right) \Longrightarrow T=C B, \quad B_{n}=\nabla_{\theta} h_{\theta}\left(Z_{n}\right)
$$

## KWNG: Ridgeless version

- Additional structure when $\lambda=0$ :

$$
\widehat{\nabla^{W} \mathcal{L}(\theta)}=\frac{1}{\epsilon}\left(I-B^{\top} C^{\top}\left(C B B^{\top} C^{\top}+\epsilon C C^{\top}\right)^{\dagger} C B\right) \widehat{\nabla \mathcal{L}(\theta)}
$$

- Chain rule for $T$ :

$$
T_{m}=\frac{1}{N} \sum_{n=1}^{N} \nabla_{\theta} \partial_{i_{m}} k\left(Y_{m}, h_{\theta}\left(Z_{n}\right)\right) \Longrightarrow T=C B, \quad B_{n}=\nabla_{\theta} h_{\theta}\left(Z_{n}\right)
$$

## KWNG: Ridgeless version

- Additional structure when $\lambda=0$ :

$$
\widehat{\nabla^{W} \mathcal{L}(\theta)}=\frac{1}{\epsilon}\left(I-B^{\top} C^{\top}\left(C B B^{\top} C^{\top}+\epsilon C C^{\top}\right)^{\dagger} C B\right) \widehat{\nabla \mathcal{L}(\theta)}
$$

- Chain rule for $T$ :

$$
T_{m}=\frac{1}{N} \sum_{n=1}^{N} \nabla_{\theta} \partial_{i_{m}} k\left(Y_{m}, h_{\theta}\left(Z_{n}\right)\right) \Longrightarrow T=C B, \quad B_{n}=\nabla_{\theta} h_{\theta}\left(Z_{n}\right)
$$

- 'Simplify' $C$ by computing an SVD : $C C^{\top}=U S U^{\top}$

$$
\widetilde{T}=S^{\dagger} U^{\top} C B, \quad P=S^{\dagger} S
$$

## KWNG: Ridgeless version

- Additional structure when $\lambda=0$ :

$$
\widehat{\nabla^{W} \mathcal{L}(\theta)}=\frac{1}{\epsilon}\left(I-\widetilde{T}^{\top}\left(\widetilde{T}^{\top} \widetilde{T}^{\top}+\epsilon P\right)^{\dagger} \widetilde{T}\right) \widehat{\nabla \mathcal{L}(\theta)}
$$

- Chain rule for $T$ :

$$
T_{m}=\frac{1}{N} \sum_{n=1}^{N} \nabla_{\theta} \partial_{i_{m}} k\left(Y_{m}, h_{\theta}\left(Z_{n}\right)\right) \Longrightarrow T=C B, \quad B_{n}=\nabla_{\theta} h_{\theta}\left(Z_{n}\right)
$$

- 'Simplify' C by computing an SVD : $\mathrm{CC}^{\top}=$ USU $^{\top}$

$$
\widetilde{T}=S^{\dagger} U^{\top} C B, \quad P=S^{\dagger} S
$$

## KWNG: Ridgeless version

- Additional structure when $\lambda=0$ :

$$
\widehat{\nabla^{W} \mathcal{L}(\theta)}=\frac{1}{\epsilon}\left(I-\widetilde{T}^{\top}\left(\widetilde{T} \widetilde{T}^{\top}+\epsilon P\right)^{\dagger} \widetilde{T}\right) \widehat{\nabla \mathcal{L}(\theta)}
$$

- Chain rule for $T$ :

$$
T_{m}=\frac{1}{N} \sum_{n=1}^{N} \nabla_{\theta} \partial_{i_{m}} k\left(Y_{m}, h_{\theta}\left(Z_{n}\right)\right) \Longrightarrow T=C B, \quad B_{n}=\nabla_{\theta} h_{\theta}\left(Z_{n}\right)
$$

- 'Simplify' $C$ by computing an SVD : $C C^{\top}=U S U^{\top}$

$$
\widetilde{T}=S^{\dagger} U^{\top} C B, \quad P=S^{\dagger} S
$$

- No consistency result for the Ridgeless estimator yet.


## KWNG: Ridgeless version

Additional structure when $\lambda=0$ :

$$
\widehat{\nabla^{W} \mathcal{L}(\theta)}=\frac{1}{\epsilon}\left(I-T^{\top}\left(T T^{\top}+\epsilon C C^{\top}\right)^{\dagger} T\right) \widehat{\nabla \mathcal{L}(\theta)}
$$

## KWNG: Ridgeless version

Additional structure when $\lambda=0$ :

$$
\widehat{\nabla^{W} \mathcal{L}(\theta)}=\frac{1}{\epsilon}\left(I-T^{\top}\left(T T^{\top}+\epsilon C C^{\top}\right)^{\dagger} T\right) \widehat{\nabla \mathcal{L}(\theta)}
$$

$$
T_{m}=\frac{1}{N} \sum_{n=1}^{N} \nabla_{\theta} \partial_{i_{m}} k\left(Y_{m}, h_{\theta}\left(Z_{n}\right)\right)
$$

## KWNG: Ridgeless version

Additional structure when $\lambda=0$ :

$$
\widehat{\nabla^{W} \mathcal{L}(\theta)}=\frac{1}{\epsilon}\left(I-T^{\top}\left(T T^{\top}+\epsilon C C^{\top}\right)^{\dagger} T\right) \widehat{\nabla \mathcal{L}(\theta)}
$$

$$
T=C B, \quad B_{n}=\nabla_{\theta} h_{\theta}\left(Z_{n}\right)
$$

## KWNG: Ridgeless version

Additional structure when $\lambda=0$ :

$$
\begin{gathered}
\widehat{\nabla^{W} \mathcal{L}(\theta)}=\frac{1}{\epsilon}\left(I-B^{\top} C^{\top}\left(C B B^{\top} C^{\top}+\epsilon C C^{\top}\right)^{\dagger} C B\right) \widehat{\nabla \mathcal{L}(\theta)} \\
T=C B, \quad B_{n}=\nabla_{\theta} h_{\theta}\left(Z_{n}\right)
\end{gathered}
$$

## KWNG: Ridgeless version

Additional structure when $\lambda=0$ :

$$
\begin{gathered}
\widehat{\nabla^{W} \mathcal{L}(\theta)}=\frac{1}{\epsilon}\left(I-B^{\top} C^{\top}\left(C B B^{\top} C^{\top}+\epsilon C C^{\top}\right)^{\dagger} C B\right) \widehat{\nabla \mathcal{L}(\theta)} \\
T=C B, \quad B_{n}=\nabla_{\theta} h_{\theta}\left(Z_{n}\right)
\end{gathered}
$$

'Simplify' C:

$$
\widetilde{T}=S^{\dagger} U^{\top} T, \quad P=S^{\dagger} S
$$

where $C C^{\top}=U S U^{\top}$

## KWNG: Ridgeless version

## Additional structure when $\lambda=0$ :

$$
\begin{aligned}
\widehat{\nabla^{W} \mathcal{L}(\theta)} & =\frac{1}{\epsilon}\left(I-\widetilde{T}^{\top}\left(\widetilde{T} \widetilde{T}^{\top}+\epsilon P\right)^{\dagger} \widetilde{T}\right) \widehat{\nabla \mathcal{L}(\theta)} \\
T & =C B, \quad B_{n}=\nabla_{\theta} h_{\theta}\left(Z_{n}\right)
\end{aligned}
$$

'Simplify' $C$ :

$$
\widetilde{T}=S^{\dagger} U^{\top} T, \quad P=S^{\dagger} S
$$

where $C C^{\top}=U S U^{\top}$

囲 Benamou，J．－D．and Brenier，Y．（2000）．
A computational fluid mechanics solution to the monge－kantorovich mass transfer problem．
Numerische Mathematik，84（3）：375－393．
E Grosse，R．and Martens，J．（2016）．
A Kronecker－factored Approximate Fisher Matrix for Convolution Layers．
In Proceedings of the 33rd International Conference on International
Conference on Machine Learning－Volume 48，ICML＇16，pages 573－582．
JMLR．org．
event－place：New York，NY，USA．
囯 Li，W．and Montufar，G．（2018）．
Natural gradient via optimal transport．
arXiv：1803．07033［cs，math］．
arXiv：1803．07033．
围 Martens，J．and Grosse，R．（2015）．
Optimizing Neural Networks with Kronecker－factored Approximate Curvature． arXiv•1503 0．5671［cs stat］


[^0]:    ${ }^{1}$ [Rudi et al., 2015, Sutherland et al., 2017]

[^1]:    ${ }^{1}$ [Rudi et al., 2015, Sutherland et al., 2017]

[^2]:    ${ }^{1}$ [Rudi et al., 2015, Sutherland et al., 2017]

