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KWNG: A natural gradient optimizer with built in Optimal Transport Geometry.
v Approximately Invariant to re-parametrization
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KWNG: A natural gradient optimizer with built in Optimal Transport Geometry.

V' Approximately invariant to re-parametrization
v Fast and scalable
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KWNG: A natural gradient optimizer with built in Optimal Transport Geometry.

V' Approximately invariant to re-parametrization
v Fast and scalable
v~ Can be used as a drop-in optimizer
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Euclidean Gradient

» Learning problem: §* = argminy £L(py)

» Update equation: 61 = 0 + \Dy

. 1
Dy = arg min VoL (pe,) u+ §||u||2




Euclidean Gradient

» Learning problem: 6* = argming £(py)
» Update equation: 61 = 0 + \Dy

. 1
Dy = argmuanQ[,(pek)Tu + E||u||2

» Different re-parametrization: ¢ = s(6)




Fisher Natural Gradient

» Learning problem: 6* = argming £(py)
» Update equation: 61 = 0 + A Dy

2
KL (p9k|~| p9k+u)

1
Dy = argmin VoL(pg,) '+ = u' Gp(fy)u
u N———

» Fisher information matrix:

GE(8) = B, [ Vo log(ps)(X) Vs log(0) (X) |
Pros:

> Invariant to parametrization
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Invariance to re-parametrization

VEL(5,)

» Re-parametrization: ¢ = ¥(6) and write g, = pg.
» Invariance to re-parametrization: = 1y = ¥(6;)



Fisher Natural Gradient

» Learning problem: 6* = argming £(py)
» Update equation: 61 = 0 + A Dy

2
KL (p9k|~| p9k+u)

Dy = argmin VoL (pg,) 't + E u' Gp(6y)u
u N———

» Fisher information matrix:

GE(8) = B, [ Vo log(ps)(X) Vs log(0) (X) |
Pros: Cons:

» Invariant to parametrization » Not scalable, but efficient approximations exist:
[Martens and Grosse, 2015, Grosse and Martens, 2016]

» lll-suited for implicit models:
XNp9<:>X:h9(Z), Z~v



Wasserstein Natural Gradient (1 and vontar, 2018

» Learning problem: §* = argminy £L(py)

» Update equation: 6,1 = 6y + A Dy

1
Dy = argmin VoL(pg,) ' u+ = ' Gw(Op)u
u 2 —

W% (p9k ) p9k+u)

» Wasserstein information matrix: Gy (0)

Pros: Cons:
» Invariant to parametrization > Not-secalable
» Works with implicit model > -H-suited-forimplicitmodets:

» Scalable approximation



Wasserstein Natural Gradient: The Gaussian Family
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Wasserstein Natural Gradient: The Gaussian Family
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Wasserstein Natural Gradient (1 and vontar, 2018

» Learning problem: §* = argminy £L(py)

» Update equation: 6,1 = 6y + A Dy

1
Dy = argmin VoL(pg,) u+ =~ u' Gw(Op)u
u 2 —

~

W% (p9k ) p9k+u)

» Wasserstein information matrix: Gy (6)

Pros: Cons:
» Invariant to parametrization > Not-secalable
» Works with implicit model > -H-suited-forimplicitmodets:

» Scalable approximation



Dynamic formulation of the Wasserstein distance




Dynamic formulation of the Wasserstein distance
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Dynamic formulation of the Wasserstein distance

» The Wasserstein distance as a geodesic distance

Wip.q) = inf / / 164 )2 dpr(0)dt,  Dupr + dio(pid) = 0



Dynamic formulation of the Wasserstein distance

» The Wasserstein distance as a geodesic distance

wﬁpqzig;/u/wt|ﬁmt dt,  dps + div(pid') = 0

» Wasserstein metric:
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Dynamic formulation of the Wasserstein distance

» The Wasserstein distance as a geodesic distance

wﬁpqzig;/u/wt|ﬁmt dt,  dps + div(pid') = 0

» Wasserstein metric:
$0(0.)i= [ Io(x)|Pdp(x), 5+ div(p0) = 0.
» Wasserstein Information matrix:

4T Gy ()1t = g,y (Vo] 1, Vool ) = /W\WM)

Vepg u+div(pgg) = 0.



The triple tricks

» The duality trick: Variational expression for elliptic equations:

Vpg tt + div(pgdu) = 0

!

1
sup Vo, [F(X)) 1~ Sy, [IIVF(X)I1]
fece()
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The triple tricks
» The duality trick: Variational expression for elliptic equations:
Vet + div(pgdy) = 0
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The triple tricks
» The duality trick: Variational expression for elliptic equations:
Vp;)ru + div(pppy) =0
1

T 2 1 2
S G0 = 5 [ 16IPdps = = sup VoB (0] u - 5 [V

» The reparametrization trick:

VoE[f(X)]u =By [Vof ((Z)] u,  X=go(Z), Z~n

» The kernel trick: Choose a nice kernel k and find solutions of the form:

Z m®;, k(Xm, x) C My



Saddle-point formulation

l’nuil’l Vgﬁ(pg)Tu + %MTGw(Q)u

|

u fE'HM

» H,s contains functions of the form:

Z am0;, (X, X)

. 1
min sup VoL(pe) "+ VoBy, [F(X)]T 1~ 5By, [IVFX)I?



Saddle-point formulation

damping
1 €
min VoL(pe)  u+ E1Jc;w(9)u+ §y|uy|2
ﬂ damping
: T T 1 2 €112
min sup VoL(ps) "1+ VoEy, [F(X)] 1~ 5By, [IVFX)I2] + 5lul

fe€HM

» H contains functions of the form:

M
f) =" om0, k(Xn, x)

m=1



Saddle-point formulation

1
min VoL (po) "+ 5" Gw(0)u + gHuHZ

I

. 1 €
sup min VL(po) u+ VoEy, [F(X)] Tt~ Epy [INFGIIP] + S u?
feHM

» H contains functions of the form:
M
F) =" cm, k(Xn, x)
m=1
» Optimal /* obtained by solving a quadratic problem of size M in (a4, ..., aum)
» Wasserstein natural descent direction:
* (VoLpa,) + Vo, [ (X))

€

Dy =



Infinitely many features with kernels!

» Kernel: "similarity" function k(x,y) € R
» e.g. gaussian kernel

1
k(x,y) = exp(— == llx — y[1?)
20
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Infinitely many features with kernels!

» Kernel: "similarity" function k(x,y) € R
» e.g. gaussian kernel

k(x,y) = exp(—3 || x—yl?)

v

Reproducing kernel Hilbert space H contains functions of the form:

Zam may Zam rnay

But H is much blgger. can be dense on C(2).
Reproducing property:

v

v

f(y) = <f7k(x7 )>H

Inner product (., .)» defined implicitly using k:
> <k(x7 ')a k(% )>7‘L = k(x7y)

v



Representer Theorem

» General Loss function of the form:

L) = [ RUOFOnsisa)p(x.y) + MR,



Representer Theorem

» General Loss function of the form:
1
L) = [ RUOFOnsisa)p(x.y) + MR,

» Empirical version using samples (X, Yy,):
1N
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Representer Theorem

» General Loss function of the form:
1
L) = [ RUOFOnsisa)p(x.y) + MR,
» Empirical version using samples (X, Yy,):
. 1 & 1
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» Representer theorem says: Optimal empirical solution of the form:

f*y) = Z i Ok (X, y)



Representer Theorem

» General Loss function of the form:
1
L) = [ RUOFOnsisa)p(x.y) + MR,

» Empirical version using samples (X, Yy,):

. 1 1

L(f) = N ZR(aLf(Xn), Yn) + QMVH%{

n

» Representer theorem says: Optimal empirical solution of the form:

f*y) = Z i Ok (X, y)

» Only need to find «: solve finite dimensional optimization problem.



Representer Theorem and Nystrom Methods

» Optimal empirical solution of the form:
W) = oni0k(Xu,y)
n,i

» Expensive to compute o, ;: cost in time O(N3d®) for quadratic loss
» Nystrom method ': Reduce computational cost:

Zam m,y
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Representer Theorem and Nystrom Methods

» Optimal empirical solution of the form:
W) = oni0k(Xu,y)
n,i

» Expensive to compute o, ;: cost in time O(N3d®) for quadratic loss
» Nystrom method ': Reduce computational cost:

Z a0, Xm,

T

Randomly sampled from {1,...,d} M sub-samples from (X;);<i<n




KWNG: Sample based version

» After some further calculations:

vWL() ~

a | =

(1 @T(TTT + 2K+ eCCT)TT> VL(0)

» Similar to a Woodbury matrix identity
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KWNG: Sample based version

» After some further calculations:

T := V7 (60) with 7(0) = £ SN, 0, k(Xon, ho(Z2)

—_

vWL(9) ~ - (1 - #T(TTT K+ eccT)TT) VL(0)

€ T T
mm’ 0; a /+dk(Xm7Xm’) Cm,(n,i) = \fa a—l—dk(vaX )

» Similar to a Woodbury matrix identity



Theory
How small M can be and still be sure it works?

10% .
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» Relative error decreases
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Theory: Consistency and convergence rates

Main assumption: Let ¢, be the solution to the PDE:
Vgt + div(pgdy) =0

For any precision « > 0, there exists f € H:

/ 6w — Vf|Pdpe <5 Ilfllo < Cre



Theory: Consistency and convergence rates

Main assumption: Let ¢, be the solution to the PDE:
Vgt + div(pgdy) =0

For any precision « > 0, there exists f € H:

/ 6w — Vf|Pdpe <5 Ilfllo < Cre

Theorem
Let § be such that0 < § < 1. Under additional mild assumptions, for N large

enough, M ~ (dN ite log(N)), A~ N e and e < N~#, it holds with probability at
least1 — ¢ that:

IVVL©) - T2 = O(N75).



Experimental evaluation: Synthetic models
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Experimental evaluation: Sensitivity to the choice of the kernel

Relative error

» Gaussian kernel k(x, y) = exp(— IIXTTyHZ)

10%

8%

6%

4%

2%

0%

sphere

Relative error

10%

8%

6%

4%

2%

0%

gaussian

Relative error

C

10%

8%

6%

4%

2%

0%

log_normal

o
IN)

coaoaooQ
{L I T (A | I

oo s N

o

o



Experimental evaluation: Optimization trajectory

» Gaussian model for pg

» Loss functional £(ps) = W53(pe, pe+)-
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Experimental evaluation: Classification task

Well-conditioned problem:

min £(ps) := / ((ho(2),Y) du(Z, Y)
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Experimental evaluation: Classification task

lll-conditioned problem:
min £(py) = / ((Uhy(2),Y) du(Z, Y)

U is a diagonal matrix with x = 107
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Accuracy



Ablation study

» Choice of the damping matrix D(6)
» Choice of the kernel (gaussian vs rational quadratic)
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Conclusion

Summary of contributions
» Proposed to use Wasserstein natural gradient for ill-conditioned problems.
» A new algorithm to estimate the Wasserstein natural gradient

» Convergence rate: trade-off between computational complexity and statistical
accuracy



Conclusion

Summary of contributions
» Proposed to use Wasserstein natural gradient for ill-conditioned problems.
» A new algorithm to estimate the Wasserstein natural gradient

» Convergence rate: trade-off between computational complexity and statistical
accuracy

Limitation:
» Sensitive to the choice of the damping/regularization.
» Additional hyper-parameters to tune (kernel, basis points,...)
» Accuracy of the estimation quickly degrades with the dimension.

» Ridgeless estimator seems much more accurate in practice but no
guarantees yet.



Future work:

» When can one clearly benefit from WNG: Natural Evolution Strategies
?

» Application to meta-learning: Can the Wasserstein be a good proximity
measure between several tasks.
» Implicit Policy Optimization:

» Useful for more complex action space ) (sequence of
actions).

» TRPO can’t be used in this case, but WNG can.



Thank you !
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» Additional structure when \ = 0:
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KWNG: Ridgeless version

» Additional structure when \ = 0:

—

vWL() =

a | =

(I ~TH(TT" + eP)TT) VL)
» Chain rule for T:

Im

Zvea k(Y ho(Zy)) = T=CB, B, = Veho(Z,)

» 'Simplify’ C by computing an SVD : CCT = USU "

T =s'u'cs, p=s's

» No consistency result for the Ridgeless estimator yet.



KWNG: Ridgeless version

Additional structure when \ = 0:

—

VL) =

—

(I ~T(TTT +eCCT)t T) VL(0)

o | =



KWNG: Ridgeless version

Additional structure when \ = 0:
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KWNG: Ridgeless version

Additional structure when \ = 0:

—

VWL() =

| =

(1 _BTCT(CBBTCT + eCCT)TCB) VL)

T=CB,  B,=Vhy(Z,)
'Simplify’ C:

T=stu'r, p=sts
where CCT = Usu"



KWNG: Ridgeless version

Additional structure when \ = 0:

—

vWL() =

—

(1 STAITT + eP)TT) VL(0)

a | =

'Simplify’ C:
T=su'T, pP=5's

where CCT = Usu"
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