The Unreasonable Effectiveness of Patches in Deep Convolutional Kernels Methods.

Louis Thiry¹ , Michael Arbel², Eugene Belilovsky³, Edouard Oyallon⁴ ¹Departement of Computer Science, DATA Team, ENS, CNRS, PSL ²Gatsby Computational Neuroscience Unit, UCL ³Concordia University and Mila Montreal ⁴ LIP6, Sorbonne Université, CNRS

Plan

- 2 Convolutional kernel methods
- 3 Our method

1 Introduction

メロト メポト メモト メモト

1 Introduction

≣ 3 / 16

メロト メポト メモト メモト

• Recent competitive convolutional kernel methods (Mairal, 2016; Li et al., 2019; Shankar et al., 2020)

・ 同 ト ・ ヨ ト ・ ヨ ト

• Recent competitive convolutional kernel methods (Mairal, 2016; Li et al., 2019; Shankar et al., 2020) : 87 – 90% on CIFAR-10.

伺下 イヨト イヨト

- Recent competitive convolutional kernel methods (Mairal, 2016; Li et al., 2019; Shankar et al., 2020) : 87 90% on CIFAR-10.
- Kernels are data-driven

I < E < < E </p>

Trends in convolutional kernel methods

- Recent competitive convolutional kernel methods (Mairal, 2016; Li et al., 2019; Shankar et al., 2020) : 87 90% on CIFAR-10.
- Kernels are data-driven
- Key ingredient: whitening.

医下 不臣下

Trends in convolutional kernel methods

- Recent competitive convolutional kernel methods (Mairal, 2016; Li et al., 2019; Shankar et al., 2020) : 87 90% on CIFAR-10.
- Kernels are data-driven
- Key ingredient: whitening.
- No (published) results on ImageNet.

Trends in convolutional kernel methods

- Recent competitive convolutional kernel methods (Mairal, 2016; Li et al., 2019; Shankar et al., 2020) : 87 90% on CIFAR-10.
- Kernels are data-driven
- Key ingredient: whitening.
- No (published) results on ImageNet.

Contributions

 Simple convolutional kernel method: K-nearest-neighbors encoding, Mahanalobis distance, linear kernel.

Trends in convolutional kernel methods

- Recent competitive convolutional kernel methods (Mairal, 2016; Li et al., 2019; Shankar et al., 2020) : 87 90% on CIFAR-10.
- Kernels are data-driven
- Key ingredient: whitening.
- No (published) results on ImageNet.

Contributions

- Simple convolutional kernel method: K-nearest-neighbors encoding, Mahanalobis distance, linear kernel.
- Comparable accuracies on CIFAR-10 with shallow classifier.

Trends in convolutional kernel methods

- Recent competitive convolutional kernel methods (Mairal, 2016; Li et al., 2019; Shankar et al., 2020) : 87 90% on CIFAR-10.
- Kernels are data-driven
- Key ingredient: whitening.
- No (published) results on ImageNet.

Contributions

- Simple convolutional kernel method: K-nearest-neighbors encoding, Mahanalobis distance, linear kernel.
- Comparable accuracies on CIFAR-10 with shallow classifier.
- Scalable to ImageNet: S.O.T.A. as non-learned visual representation.

A E
A E
A

3 Our method

2 Convolutional kernel methods

メロト メポト メモト メモト

x, y images.

$$K_{k,\Phi,\mathcal{X}}(x,y) = k(\Phi_{\mathcal{X}}L_{\mathcal{X}}x,\Phi_{\mathcal{X}}L_{\mathcal{X}}y)$$

2 Convolutional kernel methods

・ロト ・四ト ・ヨト ・ヨト

x, y images.

$$K_{k,\Phi,\mathcal{X}}(x,y) = k(\Phi_{\mathcal{X}}L_{\mathcal{X}}x,\Phi_{\mathcal{X}}L_{\mathcal{X}}y)$$

Ingredients:

メロト メポト メモト メモト

x, y images.

$$K_{k,\Phi,\mathcal{X}}(x,y) = k(\Phi_{\mathcal{X}}L_{\mathcal{X}}x,\Phi_{\mathcal{X}}L_{\mathcal{X}}y)$$

Ingredients:

• Training data

 \mathcal{X}

メロト メタト メヨト メヨト

x, y images.

$$K_{k,\Phi,\mathcal{X}}(x,y) = k(\Phi_{\mathcal{X}}L_{\mathcal{X}}x,\Phi_{\mathcal{X}}L_{\mathcal{X}}y)$$

Ingredients:

• Training data

 \mathcal{X}

• Shift and rescale (e.g. whitening) operator

 $L_{\mathcal{X}}$

伺き くほき くほう

x, y images.

$$K_{k,\Phi,\mathcal{X}}(x,y) = k(\Phi_{\mathcal{X}}L_{\mathcal{X}}x,\Phi_{\mathcal{X}}L_{\mathcal{X}}y)$$

Ingredients:

• Training data

 \mathcal{X}

• Shift and rescale (e.g. whitening) operator

 $L_{\mathcal{X}}$

Representation

 $\Phi_{\mathcal{X}}$

伺 ト イヨト イヨト

x, y images.

$$K_{k,\Phi,\mathcal{X}}(x,y) = k(\Phi_{\mathcal{X}}L_{\mathcal{X}}x,\Phi_{\mathcal{X}}L_{\mathcal{X}}y)$$

Ingredients:

• Training data

 \mathcal{X}

• Shift and rescale (e.g. whitening) operator

 $L_{\mathcal{X}}$

Representation

 $\Phi_{\mathcal{X}}$

• Predefined (e.g. Linear, Gaussian, Neural Tangent) kernel

k(x, y)

K(x, y) is **data-driven** if Φ or *L* depend on the training set \mathcal{X} , **data-independent** otherwise.

医下 不正下

< (17) > <

K(x, y) is **data-driven** if Φ or *L* depend on the training set \mathcal{X} , **data-independent** otherwise.

Examples of Data-driven kernels on CIFAR-10

• Random features (Coates et al., 2011; Recht et al., 2019): 85.6 %

K(x, y) is **data-driven** if Φ or *L* depend on the training set \mathcal{X} , **data-independent** otherwise.

Examples of Data-driven kernels on CIFAR-10

- Random features (Coates et al., 2011; Recht et al., 2019): 85.6 %
 - L: whitening of patches
 - Φ : shrinked convolutions with random patches of \mathcal{X}
 - k: linear kernel

K(x, y) is **data-driven** if Φ or *L* depend on the training set \mathcal{X} , **data-independent** otherwise.

Examples of Data-driven kernels on CIFAR-10

- Random features (Coates et al., 2011; Recht et al., 2019): 85.6 %
 - L: whitening of patches
 - Φ : shrinked convolutions with random patches of \mathcal{X}
 - k: linear kernel

• Enhanced convolutional NTK (Li et al., 2019): 88.9 %

K(x, y) is **data-driven** if Φ or *L* depend on the training set \mathcal{X} , **data-independent** otherwise.

Examples of Data-driven kernels on CIFAR-10

- Random features (Coates et al., 2011; Recht et al., 2019): 85.6 %
 - L: whitening of patches
 - Φ : shrinked convolutions with random patches of \mathcal{X}
 - k: linear kernel

• Enhanced convolutional NTK (Li et al., 2019): 88.9 %

- L and Φ: same as random features
- k: Neural Tangent kernel (NTK)

K(x, y) is **data-driven** if Φ or *L* depend on the training set \mathcal{X} , **data-independent** otherwise.

Examples of Data-driven kernels on CIFAR-10

- Random features (Coates et al., 2011; Recht et al., 2019): 85.6 %
 - L: whitening of patches
 - Φ : shrinked convolutions with random patches of \mathcal{X}
 - k: linear kernel

• Enhanced convolutional NTK (Li et al., 2019): 88.9 %

- L and Φ: same as random features
- k: Neural Tangent kernel (NTK)
- Neural Kernels Without Tangents (Shankar et al., 2020): 89.8 %

K(x, y) is **data-driven** if Φ or *L* depend on the training set \mathcal{X} , **data-independent** otherwise.

Examples of Data-driven kernels on CIFAR-10

- Random features (Coates et al., 2011; Recht et al., 2019): 85.6 %
 - L: whitening of patches
 - Φ : shrinked convolutions with random patches of \mathcal{X}
 - k: linear kernel
- Enhanced convolutional NTK (Li et al., 2019): 88.9 %
 - L and Φ: same as random features
 - k: Neural Tangent kernel (NTK)
- Neural Kernels Without Tangents (Shankar et al., 2020): 89.8 %
 - L: whitening of the image
 - k: Custom Neural Kernel

- 2 Convolutional kernel methods
- 3 Our method

3 Our method

イロト イヨト イヨト イヨト

3 Our method

・ロト ・四ト ・ヨト ・ヨト

• x: image viewed as a collection of overlapping patches.

3 Our method

イロト 不得 トイヨト イヨト

- x: image viewed as a collection of overlapping patches.
- L: whitening operator

$$L: x \mapsto (\Sigma + \lambda I)^{-1}(x - \mu)$$

イロト イポト イヨト イヨト

- x: image viewed as a collection of overlapping patches.
- L: whitening operator

$$L: x \mapsto (\Sigma + \lambda I)^{-1}(x - \mu)$$

 Φ: K-nearest-neighbor encoding in a dictionary D of randomly selected whitened patches.

イロト イ押ト イヨト イヨト

- x: image viewed as a collection of overlapping patches.
- L: whitening operator

$$L: x \mapsto (\Sigma + \lambda I)^{-1}(x - \mu)$$

- Φ: K-nearest-neighbor encoding in a dictionary D of randomly selected whitened patches.
- k(x, y): linear kernel.

.≣⇒

< 🗇 🕨 🔸

CIFAR-10 Dictionary

ImageNet64 Dictionary

3 Our method

First layer of AlexNet

3 Our method

メロト メタト メヨト メヨト

- 2 Convolutional kernel methods
- 3 Our method

イロト イヨト イヨト イヨト

CIFAR-10

Linear classification									
Method	$ \mathcal{D} $	VQ	Online	Ρ	Acc.				
Coates et al. (2011)	1k	\checkmark	×	6	68.6				
Wavelets (Oyallon et al. 2015)	-	Х	×	8	82.2				
Recht et al. (2019)	0.2 <i>M</i>	Х	×	6	85.6				
SimplePatch (Ours)	10 <i>k</i>	\checkmark	\checkmark	6	85.6				
SimplePatch (Ours)	60 <i>k</i>	×	\checkmark	6	86.9				

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

CIFAR-10

Linear classification									
Method	$ \mathcal{D} $	VQ	Online	Ρ	Acc.				
Coates et al. (2011)	1k	\checkmark	×	6	68.6				
Wavelets (Oyallon et al. 2015)	-	Х	×	8	82.2				
Recht et al. (2019)	0.2 <i>M</i>	Х	×	6	85.6				
SimplePatch (Ours)	10 <i>k</i>	\checkmark	\checkmark	6	85.6				
SimplePatch (Ours)	60 <i>k</i>	×	\checkmark	6	86.9				

Non-linear classification										
Method	Classifier	Acc.								
SimplePatch (Ours)	\checkmark	2	1-hidden-layer	88.5						
AlexNet (Krizhevsky et al. 2012)	×	5	e2e	89.1						
NK (Shankar et al. 2020)	×	5	kernel	89.8						
CKN (Mairal et al. 2016)	×	9	kernel	89.8						

₹ *•* **१ २ २**

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

ImageNet

Linear classification									
Method	$ \mathcal{D} $	VQ	Ρ	Depth	Res.	Top1	Top5		
Random CNN	-	×	-	9	224	18.9	-		
Zarka et al. (19)	-	×	32	2	224	26.1	44.7		
Ours	2 <i>k</i>	\checkmark	12	1	128	35.9	57.4		
Ours	2 <i>k</i>	Х	12	1	128	36.0	57.6		

E 990

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

ImageNet

Linear classification									
Method	$ \mathcal{D} $	VQ	Ρ	Depth	Res.	Top1	Top5		
Random CNN	-	×	-	9	224	18.9	-		
Zarka et al. (19)	-	×	32	2	224	26.1	44.7		
Ours	2 <i>k</i>	\checkmark	12	1	128	35.9	57.4		
Ours	2 <i>k</i>	×	12	1	128	36.0	57.6		

Non-linear classification									
Method	VQ	Ρ	Depth	Res.	Classif.	Top1	Top5		
Belilov. al. (18)	×	-	2	224	e2e	-	44		
Ours	\checkmark	6	2	64	1-layer	39.4	62.1		
Brendel al. (19)	×	9	50	224	e2e	-	70.0		

E 990

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Ablation Study

Train accuracies in blue, test accuracies in red.

4 Results

Questions ?

- Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised feature learning. In *Proceedings of the fourteenth international conference on artificial intelligence and statistics*, pages 215–223, 2011.
- Zhiyuan Li, Ruosong Wang, Dingli Yu, Simon S Du, Wei Hu, Ruslan Salakhutdinov, and Sanjeev Arora. Enhanced convolutional neural tangent kernels. *arXiv preprint arXiv:1911.00809*, 2019.
- Julien Mairal. End-to-end kernel learning with supervised convolutional kernel networks. In *Advances in neural information processing systems*, pages 1399–1407, 2016.
- Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers generalize to imagenet? arXiv preprint arXiv:1902.10811, 2019.
- Vaishaal Shankar, Alex Fang, Wenshuo Guo, Sara Fridovich-Keil, Ludwig Schmidt, Jonathan Ragan-Kelley, and Benjamin Recht. Neural kernels without tangents. *arXiv preprint arXiv:2003.02237*, 2020.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @